A Novel Pedestrian Orientation Estimation Method for Autonomous Driving

Author(s):  
Ming Gao ◽  
LiSheng Jin ◽  
Yuying Jiang ◽  
Baicang Guo
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 657
Author(s):  
Aoki Takanose ◽  
Yoshiki Atsumi ◽  
Kanamu Takikawa ◽  
Junichi Meguro

Autonomous driving support systems and self-driving cars require the determination of reliable vehicle positions with high accuracy. The real time kinematic (RTK) algorithm with global navigation satellite system (GNSS) is generally employed to obtain highly accurate position information. Because RTK can estimate the fix solution, which is a centimeter-level positioning solution, it is also used as an indicator of the position reliability. However, in urban areas, the degradation of the GNSS signal environment poses a challenge. Multipath noise caused by surrounding tall buildings degrades the positioning accuracy. This leads to large errors in the fix solution, which is used as a measure of reliability. We propose a novel position reliability estimation method by considering two factors; one is that GNSS errors are more likely to occur in the height than in the plane direction; the other is that the height variation of the actual vehicle travel path is small compared to the amount of movement in the horizontal directions. Based on these considerations, we proposed a method to detect a reliable fix solution by estimating the height variation during driving. To verify the effectiveness of the proposed method, an evaluation test was conducted in an urban area of Tokyo. According to the evaluation test, a reliability judgment rate of 99% was achieved in an urban environment, and a plane accuracy of less than 0.3 m in RMS was achieved. The results indicate that the accuracy of the proposed method is higher than that of the conventional fix solution, demonstratingits effectiveness.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 220 ◽  
Author(s):  
Ruibin Guo ◽  
Keju Peng ◽  
Dongxiang Zhou ◽  
Yunhui Liu

Orientation estimation is a crucial part of robotics tasks such as motion control, autonomous navigation, and 3D mapping. In this paper, we propose a robust visual-based method to estimate robots’ drift-free orientation with RGB-D cameras. First, we detect and track hybrid features (i.e., plane, line, and point) from color and depth images, which provides reliable constraints even in uncharacteristic environments with low texture or no consistent lines. Then, we construct a cost function based on these features and, by minimizing this function, we obtain the accurate rotation matrix of each captured frame with respect to its reference keyframe. Furthermore, we present a vanishing direction-estimation method to extract the Manhattan World (MW) axes; by aligning the current MW axes with the global MW axes, we refine the aforementioned rotation matrix of each keyframe and achieve drift-free orientation. Experiments on public RGB-D datasets demonstrate the robustness and accuracy of the proposed algorithm for orientation estimation. In addition, we have applied our proposed visual compass to pose estimation, and the evaluation on public sequences shows improved accuracy.


2017 ◽  
Vol 14 (1) ◽  
pp. 172988141668713 ◽  
Author(s):  
Seongjo Lee ◽  
Seoungjae Cho ◽  
Sungdae Sim ◽  
Kiho Kwak ◽  
Yong Woon Park ◽  
...  

Obstacle avoidance and available road identification technologies have been investigated for autonomous driving of an unmanned vehicle. In order to apply research results to autonomous driving in real environments, it is necessary to consider moving objects. This article proposes a preprocessing method to identify the dynamic zones where moving objects exist around an unmanned vehicle. This method accumulates three-dimensional points from a light detection and ranging sensor mounted on an unmanned vehicle in voxel space. Next, features are identified from the cumulative data at high speed, and zones with significant feature changes are estimated as zones where dynamic objects exist. The approach proposed in this article can identify dynamic zones even for a moving vehicle and processes data quickly using several features based on the geometry, height map and distribution of three-dimensional space data. The experiment for evaluating the performance of proposed approach was conducted using ground truth data on simulation and real environment data set.


Sign in / Sign up

Export Citation Format

Share Document