Research on application of flowforms in combination with planted constructed wetland for improving water quality of urban polluted lakes

Author(s):  
Thi Thuy Ha Ung ◽  
Tuan Hung Pham ◽  
Tho Bach Leu ◽  
Thi Hien Hoa Tran ◽  
Hong Nhung Chu
Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3418
Author(s):  
Bing Li ◽  
Rui Jia ◽  
Yiran Hou ◽  
Chengfeng Zhang ◽  
Jian Zhu ◽  
...  

In aquaculture, constructed wetland (CW) has recently attracted attention for use in effluent purification due to its low running costs, high efficiency and convenient operation,. However, less data are available regarding the long-term efficiency of farm-scale CW for cleaning effluents from inland freshwater fish farms. This study investigated the effectiveness of CW for the removal of nutrients, organic matter, phytoplankton, heavy metals and microbial contaminants in effluents from a blunt snout bream (Megalobrama amblycephala) farm during 2013–2018. In the study, we built a farm-scale vertical subsurface flow CW which connected with a fish pond, and its performance was evaluated during the later stage of fish farming. The results show that CW improved the water quality of the fish culture substantially. This system was effective in the removal of nutrients, with a removal rate of 21.43–47.19% for total phosphorus (TP), 17.66–53.54% for total nitrogen (TN), 32.85–53.36% for NH4+-N, 33.01–53.28% NH3-N, 30.32–56.01% for NO3−-N and 42.75–63.85% for NO2−-N. Meanwhile, the chlorophyll a (Chla) concentration was significantly reduced when the farming water flowed through the CW, with a 49.69–62.01% reduction during 2013–2018. However, the CW system only had a modest effect on the chemical oxygen demand (COD) in the aquaculture effluents. Furthermore, concentrations of copper (Cu) and lead (Pb) were reduced by 39.85% and 55.91%, respectively. A microbial contaminants test showed that the counts of total coliform (TC) and fecal coliform (FC) were reduced by 55.93% and 48.35%, respectively. In addition, the fish in the CW-connected pond showed better growth performance than those in the control pond. These results indicate that CW can effectively reduce the loads of nutrients, phytoplankton, metals, and microbial contaminants in effluents, and improve the water quality of fish ponds. Therefore, the application of CW in intensive fish culture systems may provide an advantageous alternative for achieving environmental sustainability.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0171019 ◽  
Author(s):  
Xu Pan ◽  
Yunmei Ping ◽  
Lijuan Cui ◽  
Wei Li ◽  
Xiaodong Zhang ◽  
...  

2020 ◽  
Author(s):  
Sani Dauda Ahmed ◽  
Sampson Kwaku Agodzo ◽  
Kwaku Amaning Adjei

Constructed wetlands are recognized as viable potential technology for reducing pollution load and improving quality of water and wastewater. The use of river diversion wetlands is gaining place for improving quality of river and stream water. However, the design criterion for this category of wetlands has not been fully established, and there is a need to optimize existing approach to enhance operational performance. This chapter presents a step-by-step approach for the design of a typical river diversion constructed wetland intended to remove some pollutants and improve river water quality. The approach focused mainly on water quality objective and outlined simple criteria, guidelines, and model equations for the design procedure of a new river diversion constructed wetland. The design of constructed wetlands is generally an iterative process based on empirical equations. Thus, this approach combines simple equations and procedure for estimating the amount of river water to be diverted for treatment so as to assist the designer in sizing the wetland system. The novel approach presented may be useful to wetland experts as some of the procedures presented are not popular in wetland studies. However, this may improve existing river diversion wetlands’ design and development.


Author(s):  
Santhosh K. M ◽  
S. Prashanth

Urban development, agricultural runoff and industrialization have contributed pollution loading on the environment.  In this study Hemavathi river water from a stretch from its origin point to its sangama was studied for pollution load by determining parameters of water quality like pH, Alkalinity,  Ca, Mg, Nitrate, TDS, BOD, COD , and the results were compared with WHO and BIS standards to draw final conclusion on the quality of water.


2008 ◽  
Vol 37 (2) ◽  
Author(s):  
Maciej Walczak

Changes of microbial indices of water quality in the Vistula and Brda rivers as a result of sewage treatment plant operationThis paper reports the results of studies of microbiological changes in the water quality of the Vistula and Brda rivers after the opening of sewage treatment plants in Bydgoszcz. The study involved determining the microbiological parameters of water quality. Based on the results obtained, it was found that the quality of the water in both rivers had improved decidedly after the opening of the plants, although an increased number of individual groups of microorganisms was found at the treated sewage outlet from one of the plants.


Sign in / Sign up

Export Citation Format

Share Document