Automated Real-Time Parking Management for Smart Cities

Author(s):  
Pampa Sadhukhan ◽  
Arijit Talukdar
Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4916
Author(s):  
Ali Usman Gondal ◽  
Muhammad Imran Sadiq ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
...  

Urbanization is a big concern for both developed and developing countries in recent years. People shift themselves and their families to urban areas for the sake of better education and a modern lifestyle. Due to rapid urbanization, cities are facing huge challenges, one of which is waste management, as the volume of waste is directly proportional to the people living in the city. The municipalities and the city administrations use the traditional wastage classification techniques which are manual, very slow, inefficient and costly. Therefore, automatic waste classification and management is essential for the cities that are being urbanized for the better recycling of waste. Better recycling of waste gives the opportunity to reduce the amount of waste sent to landfills by reducing the need to collect new raw material. In this paper, the idea of a real-time smart waste classification model is presented that uses a hybrid approach to classify waste into various classes. Two machine learning models, a multilayer perceptron and multilayer convolutional neural network (ML-CNN), are implemented. The multilayer perceptron is used to provide binary classification, i.e., metal or non-metal waste, and the CNN identifies the class of non-metal waste. A camera is placed in front of the waste conveyor belt, which takes a picture of the waste and classifies it. Upon successful classification, an automatic hand hammer is used to push the waste into the assigned labeled bucket. Experiments were carried out in a real-time environment with image segmentation. The training, testing, and validation accuracy of the purposed model was 0.99% under different training batches with different input features.


2017 ◽  
Vol 18 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Jamal Raiyn

Abstract This paper introduces a new scheme for road traffic management in smart cities, aimed at reducing road traffic congestion. The scheme is based on a combination of searching, updating, and allocation techniques (SUA). An SUA approach is proposed to reduce the processing time for forecasting the conditions of all road sections in real-time, which is typically considerable and complex. It searches for the shortest route based on historical observations, then computes travel time forecasts based on vehicular location in real-time. Using updated information, which includes travel time forecasts and accident forecasts, the vehicle is allocated the appropriate section. The novelty of the SUA scheme lies in its updating of vehicles in every time to reduce traffic congestion. Furthermore, the SUA approach supports autonomy and management by self-regulation, which recommends its use in smart cities that support internet of things (IoT) technologies.


Author(s):  
Ivan Jezdović ◽  
Snežana Popović ◽  
Miloš Radenković ◽  
Aleksandra Labus ◽  
Zorica Bogdanović

2015 ◽  
Vol 20 (2) ◽  
pp. 192-204 ◽  
Author(s):  
Eleni I. Vlahogianni ◽  
Konstantinos Kepaptsoglou ◽  
Vassileios Tsetsos ◽  
Matthew G. Karlaftis

Author(s):  
Chi-Yat Lau ◽  
Man-Ching Yuen ◽  
Ka-Ho Yueng ◽  
Cheuk-Pan Fan ◽  
On-Yi Ko ◽  
...  

Author(s):  
Suresh P. ◽  
Keerthika P. ◽  
Sathiyamoorthi V. ◽  
Logeswaran K. ◽  
Manjula Devi R. ◽  
...  

Cloud computing and big data analytics are the key parts of smart city development that can create reliable, secure, healthier, more informed communities while producing tremendous data to the public and private sectors. Since the various sectors of smart cities generate enormous amounts of streaming data from sensors and other devices, storing and analyzing this huge real-time data typically entail significant computing capacity. Most smart city solutions use a combination of core technologies such as computing, storage, databases, data warehouses, and advanced technologies such as analytics on big data, real-time streaming data, artificial intelligence, machine learning, and the internet of things (IoT). This chapter presents a theoretical and experimental perspective on the smart city services such as smart healthcare, water management, education, transportation and traffic management, and smart grid that are offered using big data management and cloud-based analytics services.


Sign in / Sign up

Export Citation Format

Share Document