Surface Roughness and Tool Wear in Edge Trimming of Carbon Fiber Reinforced Polymer (CFRP): Variation in Tool Geometrical Design

Author(s):  
Syahrul Azwan Sundi ◽  
R. Izamshah ◽  
M. S. Kasim ◽  
M. F. Jaafar ◽  
M. H. Hassan
2019 ◽  
Vol 53 (28-30) ◽  
pp. 4189-4202
Author(s):  
R Prakash ◽  
Vijayan Krishnaraj ◽  
Jamal Sheikh-Ahmad

During trimming of edges of carbon fiber-reinforced polymer composite parts, issues such as resin degradation, delamination, and poor surface finish at the trimmed edges, and increased tool wear in cutting tools used is common. Therefore, it is essential to carry out investigations on edge trimming of carbon fiber-reinforced polymer to find the effect of cutting forces generated and the cutting tool temperature induced at different high speeds and feeds conditions. In this work, two different-coated router tools of titanium aluminum nitride-coated and diamond-like carbon-coated routers were used for investigating the effect of these coatings on cutting force and cutting tool temperature which affect the surface quality of trimmed carbon fiber-reinforced polymer. From the investigation, it was found that the diamond-like carbon-coated router tool has generated lower cutting forces, cutting tool temperatures, and, in turn, better surface finish even at high-speed conditions when compared to other tools. Due to the complex geometry of the router tool, online tool wear monitoring by acoustic emission technique was employed. Acoustic emission signals were taken as the measuring index of tool wear which shows good correlation with direct tool wear measurements. From the experiments, it was found that the tool performance of the diamond-like carbon-coated router is superior when compared to other tools. In addition, for edge trimming of carbon fiber-reinforced polymer composite parts, the diamond-like carbon router tool performed without much disturbance for a length of machining of around 5.9 m which is about 46% of increase in length of machining when compared to uncoated router tool.


Author(s):  
Dhiraj Kumar ◽  
KK Singh

In the drilling of carbon fiber reinforced polymer composite materials, drilling-induced delamination and surface roughness of machined holes are causes of major concern, particularly, when components, made of carbon fiber reinforced polymer, are used in the aerospace industry. In order to minimize these drawbacks, an innovative technique has been developed by adding multiwalled carbon nanotube in the polymer matrix to improve interlaminar shear strength and flexural strength of the laminates. Experimental results indicate that with this process, flexural strength and interlaminar shear strength get enhanced by almost 24% and 28%, respectively, when compared to neat epoxy carbon fiber reinforced polymer composite. The image process results reveal that delamination factor gets decreased by 21% and 28.60% at the entrance and the exit side, respectively. This, in turn, not only reduces the delamination factor during the process but also facilitates the process to be carried out more smoothly. During this investigation, scanning acoustic microscope was used to study ply-by-ply damage followed by ultrasonic C-scan on both sides of the laminates, which showed good agreement with the experimental results. Measurement of surface roughness of the machined hole showed the maximum Ra value of 5.03 µm in neat epoxy carbon fiber reinforced polymer composite. However, a sample with 1.5 wt% of multiwalled carbon nanotube showed a decline in Ra value (1.18 µm). Thus, addition of multiwalled carbon nanotube to the polymer matrix could reduce the drilling-induced delamination as well as the surface roughness of machined hole simultaneously.


2018 ◽  
Vol 53 (6) ◽  
pp. 819-833 ◽  
Author(s):  
M Balasubramanian ◽  
S Madhu

Carbon fibre-reinforced polymer composites are finding increased applications in the field of automotive manufacture and aircraft industries due to their appreciative combination of high strength and low weight. The machining of these composites with economically viable and high part qualities requires enhancement in machining strategies. Delamination and surface roughness are the undesirable geometrical defects inherent in abrasive jet machining of layered polymer composites. This investigation focuses on the mechanism of delamination and surface roughness in abrasive jet machining of carbon fibre-reinforced polymer composite. The paper endeavors at the exploration of the viability of imparting swirling motion to SiC abrasive particles by presenting internal threads in the newly designed nozzle. In this research, a novel threaded nozzle was introduced in the abrasive jet machine for making holes on the carbon fiber-reinforced polymer composites with the objective of reducing the delamination and surface roughness. This is a distinctive attempt of its kind and this has brought down the delamination factor considerably and, as a consequence, surface roughness obtained was minimum. Holes were made on carbon fiber-reinforced polymer composite by abrasive jet machining with a modified nozzle with and without an internal thread. The influence of abrasive jet parameters on the delamination factor (bottom and top) and surface roughness (Ra) was investigated. Maximum pressure and minimum SOD cause decrease in delamination and surface roughness in carbon fiber-reinforced polymer composite composites.


Author(s):  
Jinyang Xu ◽  
Qinglong An ◽  
Ming Chen

In modern manufacturing sectors, mechanical drilling of high-strength carbon fiber–reinforced polymer represents the most challenging task as compared to conventional low-strength carbon fiber–reinforced polymer drilling due to the extremely superior mechanical/physical properties involved. The poor machinability of the composite usually results in serious geometric imperfection and physical damage in drilling and hence leads to a large amount of part rejections. In this article, an experimental investigation concerning the cutting-induced damage when drilling high-strength carbon fiber–reinforced polymer laminates was presented. The studied composite specimen was a newly developed high-strength T800S/250F carbon fiber–reinforced polymer composite. A special concentration was made to inspect and characterize the phenomena of various cutting-induced damage promoted in the material drilling. The work focused on the study of the influence of cutting parameters on the distribution and extent of hole damage formation. The experimental results highlighted the most influential factor of feed rate and tool wear in affecting the final extent of induced hole damage when drilling high-strength T800S/250F carbon fiber–reinforced polymer. For minimizing the various damage formation, optimal cutting parameters (high spindle speed and low feed rate) and rigorous control of tool wear should be seriously taken when drilling this material.


2019 ◽  
Vol 7 (1) ◽  
pp. 30-34
Author(s):  
A. Ajwad ◽  
U. Ilyas ◽  
N. Khadim ◽  
Abdullah ◽  
M.U. Rashid ◽  
...  

Carbon fiber reinforced polymer (CFRP) strips are widely used all over the globe as a repair and strengthening material for concrete elements. This paper looks at comparison of numerous methods to rehabilitate concrete beams with the use of CFRP sheet strips. This research work consists of 4 under-reinforced, properly cured RCC beams under two point loading test. One beam was loaded till failure, which was considered the control beam for comparison. Other 3 beams were load till the appearance of initial crack, which normally occurred at third-quarters of failure load and then repaired with different ratios and design of CFRP sheet strips. Afterwards, the repaired beams were loaded again till failure and the results were compared with control beam. Deflections and ultimate load were noted for all concrete beams. It was found out the use of CFRP sheet strips did increase the maximum load bearing capacity of cracked beams, although their behavior was more brittle as compared with control beam.


Sign in / Sign up

Export Citation Format

Share Document