Yeast: A Model Organism for Antimicrobial Drug Discovery

Author(s):  
Priyanka Sharma
Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 141
Author(s):  
Donatella Tondi

The spread of infections resistant to available anti-infective drugs is a serious menace to human health [...]


Author(s):  
Wooseong Kim ◽  
Iliana Escobar ◽  
Beth Burgwyn Fuchs ◽  
Eleftherios Mylonakis

Author(s):  
I. I. Myrko ◽  
T. I. Chaban ◽  
V. V. Ogurtsov ◽  
V. S. Matiychuk

Мета роботи. Здійснити синтез деяких нових піразолзаміщених 7H-[1,2,4]триазоло[3,4-b][1,3,4]тіадіазинів та провести дослідження антимікробних властивостей синтезованих сполук. Матеріали і методи. Органічний синтез, ЯМР-спектроскопія, елементний аналіз, фармакологічний скринінг. Результати й обговорення. У результаті взаємодії eтил (2Z)-хлоро(фенілгідразоно)ацетатів з ацетилацетоном було отримано етил 4-ацетил-5-метил-1-феніл-1H-піразол-3-карбоксилати. Зазначені сполуки піддали бромуванню, що дозволило одержати цільові бромкетони. Синтезовані на даній стадії етил 1-арил-4-(бромацетил)-5-метил-1Н-піразол-3-карбоксилати було введено у взаємодію з 4-аміно-5-арил(гетарил)-2,4-дигідро-3Н-1,2,4-триазол-3-тіонами з подальшим формуванням 1,3,4-тіадіазольного циклу та отриманням відповідних етил 1-арил-4-{3-арил(гетарил)-7H-[1,2,4]триазоло[3,4-b][1,3,4]тіадіазин-6-іл)}-5-метил-1H-піразол-3-карбоксилатів. Структура синтезованих сполук підтверджена даними елементного аналізу та ЯМР спектроскопією. В рамках міжнародного проекту "The Community for Antimicrobial Drug Discovery" (CO-ADD) за підтримки Wellcome Trust (Великобританія) і університету Квінсленда (Австралія) для синтезованих сполук здійснено скринінг антимікробної активності. Як тестові мікроорганізми використовували п'ять штамів бактерій: Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 700603, Acinetobacter baumannii ATCC 19606, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 43300 та двох штамів грибків: Candida albicans ATCC 90028 і Cryptococcus neoformans ATCC 208821. Встановлено, що досліджувані сполуки виявляють різноманітну дію, від практично повної її відсутності до виразного антимікробного ефекту. Висновки. Здійснено синтез 12 нових етил 1-арил-4-{3-арил(гетарил)-7H-[1,2,4]триазоло[3,4-b][1,3,4]тіадіазин-6-іл)}-5-метил-1H-піразол-3-карбоксилатів. Зазначені речовини отримані шляхом взаємодії відповідних етил 1-арил-4-(бромацетил)-5-метил-1Н-піразол-3-карбоксилатів з 4-аміно-5-арил(гетарил)-2,4-дигідро-3Н-1,2,4-триазол-3-тіонами. Дослідження антимікробної активності синтезованих сполук демонструють потенціал пошуку антимікробних агентів серед зазначеного класу сполук.


mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Tomoe Kitao ◽  
Francois Lepine ◽  
Seda Babloudi ◽  
Frederick Walte ◽  
Stefan Steinbacher ◽  
...  

ABSTRACT New approaches to antimicrobial drug discovery are urgently needed to combat intractable infections caused by multidrug-resistant (MDR) bacteria. Multiple virulence factor regulator (MvfR or PqsR), a Pseudomonas aeruginosa quorum sensing transcription factor, regulates functions important in both acute and persistent infections. Recently identified non-ligand-based benzamine-benzimidazole (BB) inhibitors of MvfR suppress both acute and persistent P. aeruginosa infections in mice without perturbing bacterial growth. Here, we elucidate the crystal structure of the MvfR ligand binding domain (LBD) in complex with one potent BB inhibitor, M64. Structural analysis indicated that M64 binds, like native ligands, to the MvfR hydrophobic cavity. A hydrogen bond and pi interaction were found to be important for MvfR-M64 affinity. Surface plasmon resonance analysis demonstrated that M64 is a competitive inhibitor of MvfR. Moreover, a protein engineering approach revealed that Gln194 and Tyr258 are critical for the interaction between MvfR and M64. Random mutagenesis of the full-length MvfR protein identified a single-amino-acid substitution, I68F, at a DNA binding linker domain that confers M64 insensitivity. In the presence of M64, I68F but not the wild-type (WT) MvfR protein retained DNA binding ability. Our findings strongly suggest that M64 promotes conformational change at the DNA binding domain of MvfR and that the I68F mutation may compensate for this change, indicating allosteric inhibition. This work provides critical new insights into the molecular mechanism of MvfR function and inhibition that could aid in the optimization of anti-MvfR compounds and improve our understanding of MvfR regulation. IMPORTANCE Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes serious acute, persistent, and relapsing infections. New approaches to antimicrobial drug discovery are urgently needed to combat intractable infections caused by this pathogen. The Pseudomonas aeruginosa quorum sensing transcription factor MvfR regulates functions important in both acute and persistent infections. We used recently identified inhibitors of MvfR to perform structural studies and reveal important insights that would benefit the optimization of anti-MvfR compounds. Altogether, the results reported here provide critical detailed mechanistic insights into the function of MvfR domains that may benefit the optimization of the chemical, pharmacological, and safety properties of MvfR antagonist series.


2008 ◽  
pp. 271-283 ◽  
Author(s):  
Lefa E. Alksne ◽  
Paul M. Dunman

Sign in / Sign up

Export Citation Format

Share Document