Performance Comparison of Different Machine Learning Algorithms for Risk Prediction and Diagnosis of Breast Cancer

Author(s):  
Asmita Ray ◽  
Ming Chen ◽  
Yvette Gelogo
Author(s):  
Madhuri Maru ◽  
Saket Swarndeep

Breast cancer represents one of the diseases that make a high number of deaths every year. It is the most common type of all cancers and the main cause of women's deaths worldwide. Classification and data mining methods are an effective way to classify data. Especially in medical field, where those methods are widely used in diagnosis and analysis to make decisions. Here, a common misconception is that predictive analytics and machine learning are the same thing where in predictive analysis is a statistical learning and machine learning is pattern recognition and explores the notion that algorithms can learn from and make predictions on data. In this paper, we are addressing the problem of predictive analysis by adding machine learning techniques for better prediction of breast cancer. In this, a performance comparison between different machine learning algorithms: Support Vector Machine (SVM), Decision Tree (C4.5), Naive Bayes (NB) and k Nearest Neighbors (k-NN) on the Wisconsin Breast Cancer (original) datasets is conducted. The main objective is to assess the correctness in classifying data with respect to efficiency and effectiveness of hybrid algorithm in terms of accuracy, precision, sensitivity and specificity.


2016 ◽  
Vol 83 ◽  
pp. 1064-1069 ◽  
Author(s):  
Hiba Asri ◽  
Hajar Mousannif ◽  
Hassan Al Moatassime ◽  
Thomas Noel

2021 ◽  
Vol 11 (15) ◽  
pp. 6728
Author(s):  
Muhammad Asfand Hafeez ◽  
Muhammad Rashid ◽  
Hassan Tariq ◽  
Zain Ul Abideen ◽  
Saud S. Alotaibi ◽  
...  

Classification and regression are the major applications of machine learning algorithms which are widely used to solve problems in numerous domains of engineering and computer science. Different classifiers based on the optimization of the decision tree have been proposed, however, it is still evolving over time. This paper presents a novel and robust classifier based on a decision tree and tabu search algorithms, respectively. In the aim of improving performance, our proposed algorithm constructs multiple decision trees while employing a tabu search algorithm to consistently monitor the leaf and decision nodes in the corresponding decision trees. Additionally, the used tabu search algorithm is responsible to balance the entropy of the corresponding decision trees. For training the model, we used the clinical data of COVID-19 patients to predict whether a patient is suffering. The experimental results were obtained using our proposed classifier based on the built-in sci-kit learn library in Python. The extensive analysis for the performance comparison was presented using Big O and statistical analysis for conventional supervised machine learning algorithms. Moreover, the performance comparison to optimized state-of-the-art classifiers is also presented. The achieved accuracy of 98%, the required execution time of 55.6 ms and the area under receiver operating characteristic (AUROC) for proposed method of 0.95 reveals that the proposed classifier algorithm is convenient for large datasets.


Sign in / Sign up

Export Citation Format

Share Document