Classification of Tomato Plant Diseases Through Leaf Using Gray-Level Co-occurrence Matrix and Color Moment with Convolutional Neural Network Methods

Author(s):  
Anton Anton ◽  
Supriadi Rustad ◽  
Guruh Fajar Shidik ◽  
Abdul Syukur
2020 ◽  
Vol 17 (8) ◽  
pp. 3567-3576
Author(s):  
Venigalla Sai Teja ◽  
Chilakapati Srinivas ◽  
P. Radhika

Humans can recognize the plants infected by diseases but separated from our visual perception it is hard to recognize plant diseases. In croplands without taking the right care and prompt action, the entire field may become a region afflicted by diseases. So we identify the plant diseases ahead of time with the assistance of present-day computer technologies. An advanced model was introduced to accurately recognize and classification plant diseases. Here we proposed an approach that can use the Convolutional Neural Network (CNN) based on BFOA for distinguishing diseases in plants. The input picture for the extraction of features is divided into 3 clusters by the Euclidean distance measurement metric of the k-mean algorithm and from the ROI, parameters of the GLCM matrix are calculated in the same cluster prior to BFOA. Assigning matrix parameters as BFOA input improves the network’s accuracy and efficiency in determining. In classification, we proposed a Convolutional Neural Network (CNN) using ResNet50 as a pre-trained network in deep learning toolbox which classifies from a given dataset. The approach is more reliable as the detection and classification of plant diseases are more precise.


2020 ◽  
pp. 464-465
Author(s):  
Vijayaganth V ◽  
Naveenkumar M ◽  
Mohan M

The disease in tomato leaves affects the quality and quantity of the crops. To overcome this problem an early diagnosis of diseases will benefit the farmers. This work uses PlantVillage dataset of 9 tomato leaves and fed to AlexNet and VGG16. It focuses on accuracy of the model by using hyperparameters like batch size, learning rate and optimizer.


2020 ◽  
Vol 37 (6) ◽  
pp. 1093-1101
Author(s):  
Divakar Yadav ◽  
Akanksha ◽  
Arun Kumar Yadav

Plants have a great role to play in biodiversity sustenance. These natural products not only push their demand for agricultural productivity, but also for the manufacturing of medical products, cosmetics and many more. Apple is one of the fruits that is known for its excellent nutritional properties and is therefore recommended for daily intake. However, due to various diseases in apple plants, farmers have to suffer from a huge loss. This not only causes severe effects on fruit’s health, but also decreases its overall productivity, quantity, and quality. A novel convolutional neural network (CNN) based model for recognition and classification of apple leaf diseases is proposed in this paper. The proposed model applies contrast stretching based pre-processing technique and fuzzy c-means (FCM) clustering algorithm for the identification of plant diseases. These techniques help to improve the accuracy of CNN model even with lesser size of dataset. 400 image samples (200 healthy, 200 diseased) of apple leaves have been used to train and validate the performance of the proposed model. The proposed model achieved an accuracy of 98%. To achieve this accuracy, it uses lesser data-set size as compared to other existing models, without compromising with the performance, which become possible due to use of contrast stretching pre-processing combined with FCM clustering algorithm.


2019 ◽  
Vol 6 (1) ◽  
pp. 35-41
Author(s):  
Muhamad Fathurahman ◽  
Rachmadhani Ajeng Nurmufti ◽  
Elan Suherlan

The classification of cell types plays an essential role in monitoring the growth of cancer cells. One of the methods to determine the cancer type is to analyze the pap-smear images manually. Nevertheless, the manual analysis of pap-smear images by the expert has several limitations, such as time-consuming and prone to misdiagnosis. For reducing the risks, it requires the automatic classification of cell types based on pap-smear images. This study utilizes the convolutional neural network (CNN) architectures to automatically classify the cell type into two-class categories (normal/abnormal) based on three features. These features, such as the local binary pattern, gray level co-occurrence matrix, and shape features, are extracted from pap-smear images. This study shows the performance of CNN achieved the maximum accuracy of 99.98%, 100.0%, 99.78% in training, validation, and testing data. Our approach also outperforms the performance of the baseline methods.    Keywords : CNN, Classification, Cell, Neural Network, Pap-smear


2021 ◽  
Vol 2 (1) ◽  
pp. 1-8
Author(s):  
Chairul Imam ◽  
Eka Wahyu Hidayat ◽  
Neng Ika Kurniati

Lately, there is often a mixture of beef and pork done by traders to the general public as buyers. This is due to the unconsciousness of the buyer on how to recognize the type of meat purchased. The effect of this meat mix can certainly be detrimental to buyers, especially Muslims. Image processing is a general term for various methods in which it is used to manipulate and modify images in various ways. Classification is a method of grouping some information and ensuring it is listed in a class.. Classification of beef and pork differentiator in this application using Artificial Neural Network (ANN) method while for texture extraction using Gray Level Co-occurrence Matrix (GLCM) method. The information used in the examination was 30 images of fresh meat divided into 15 images of fresh beef and 15 images of fresh pork. The data used is data Classification of Beef and Pork Image based on Color and Texture Characteristics. The result of classification accuracy obtained in this application is 80%.


Author(s):  
Wijang Widhiarso ◽  
Yohannes Yohannes ◽  
Cendy Prakarsah

Image are objects that have many information. Gray Level Co-occurrence Matrix is one of many ways to extract information from image objects. Wherein, the extracted informations can be processed again using different methods, Gray Level Co-occurrence Matrix is use for clarifying brain tumor using Convolutional Neural Network. The scope in this research is to process the extracted information from Gray Level Co-occurrence Matrix to Convolutional Neural Network where it will processed as Deep Learning to measure the accuracy using four data combination from TI1, in the form of brain tumor data Meningioma, Glioma and Pituitary Tumor. Based on the implementation of this research, the classification result of Convolutional Neural Network shows that the contrast feature from Gray Level Co-occurrence Matrix can increase the accuracy level up to twenty percent than the other features. This extraction feature is also accelerate the classification process using Convolutional Neural Network.


Author(s):  
Thippa Reddy Gadekallu ◽  
Dharmendra Singh Rajput ◽  
M. Praveen Kumar Reddy ◽  
Kuruva Lakshmanna ◽  
Sweta Bhattacharya ◽  
...  

BUANA ILMU ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 192-208
Author(s):  
Ayu Ratna Juwita ◽  
Tohirn Al Mudzakir ◽  
Adi Rizky Pratama ◽  
Purwani Husodo ◽  
Rahmat Sulaiman

Batik merupakan suatu kerjianan tangan yang memiliki nilai seni yang cukup tinggi dan juga salah satu bagian dari budaya indonessia. Untuk melestraikan budaya warisan batik dapat dikakukan dengan berbagai cara dengan pengenalan pola batik yang sangat beragam khususnya batik karawang. Penelitian ini membahas klasifikasi pola batik karawang menggunakan Convolutional Neural Network (CNN)  dengan ciri gray level Co-ocurrence Matrix. Proses awal yang akan dilakukan  yaitu preprocessing untuk mengubah citra warna menjadi grayscale, selanjutnya citra akan di segmentasikan sehingga memisahkan citra pola batik dengan background menggunakan metode otsu dan di ekstraksi menggunakan metode gray level co-ocurrence matrix untuk mendeteksi pola-pola batik. selanjutnya akan diklasifikasikan menggunakan metode Convolutional Neural Network (CNN) yang memberikan hasil klasifikasi citra batik. Dengan penerapan model klasifikasi citra batik Karawang ini memliki data training sebanyak 1094 citra latih dengan nilai akurasi 18,19% untuk citra latih,  citra dapat mengklasifikasikan dengan uji coba 344 citra batik, 45 citra batik Karawang, 299 citra batik luar Karawang mencapai 18,60% nilai tingkat akurasi, sedangkan hasil uji coba menggunakan citra batik karawang yang dapat dikenali dan diklasifikasikan mencapai nilai tingkat akurasi 73,33 %. Kata Kunci : Klasifikasi citra batik, CNN, GLCM, Otsu, Image Processing   Batik is a handicraft that has a high artistic value and also Batik is a part of Indonesian culture. To preserve the cultural heritage of batik it can be do in various ways with the introduction of many diverse batik patterns, especially karawang batik.. This study discusses the classification of Karawang batik patterns using Convolutional Neural Network (CNN) with gray level co-occurrence matrix characteristics. Initial process is preprocessing to convert the color image to grayscale, Then the image will be segmented. It can separated the image of the batik pattern from the background using the Otsu method and extracted using the gray level co-occurrence matrix method to detect batik patterns. Then, it will be classified using the Convolutional Neural Network (CNN) method which gives the results of batik image classification. With the application of this Karawang batik image classification model, it has training data of 1094 training images with an accuracy value of 18.19% for training images, images can be classified by testing 344 batik images, 45 Karawang batik images, 299 outer Karawang batik images reaching 18.60 % the value of the accuracy level, while the results of the trial using the image of batik karawang which can be recognized and classified reach an accuracy level of 73.33%. Keywords: Batik image classification, CNN, GLCM, Otsu, Image Processing


Sign in / Sign up

Export Citation Format

Share Document