scholarly journals A Novel Convolutional Neural Network Based Model for Recognition and Classification of Apple Leaf Diseases

2020 ◽  
Vol 37 (6) ◽  
pp. 1093-1101
Author(s):  
Divakar Yadav ◽  
Akanksha ◽  
Arun Kumar Yadav

Plants have a great role to play in biodiversity sustenance. These natural products not only push their demand for agricultural productivity, but also for the manufacturing of medical products, cosmetics and many more. Apple is one of the fruits that is known for its excellent nutritional properties and is therefore recommended for daily intake. However, due to various diseases in apple plants, farmers have to suffer from a huge loss. This not only causes severe effects on fruit’s health, but also decreases its overall productivity, quantity, and quality. A novel convolutional neural network (CNN) based model for recognition and classification of apple leaf diseases is proposed in this paper. The proposed model applies contrast stretching based pre-processing technique and fuzzy c-means (FCM) clustering algorithm for the identification of plant diseases. These techniques help to improve the accuracy of CNN model even with lesser size of dataset. 400 image samples (200 healthy, 200 diseased) of apple leaves have been used to train and validate the performance of the proposed model. The proposed model achieved an accuracy of 98%. To achieve this accuracy, it uses lesser data-set size as compared to other existing models, without compromising with the performance, which become possible due to use of contrast stretching pre-processing combined with FCM clustering algorithm.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2648
Author(s):  
Muhammad Aamir ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Muhammad Zeeshan Azam ◽  
...  

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we propose a multilayered deep convolutional neural network. The proposed model works in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters. The model is tested on 4428 natural images and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%; specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%. The overall accuracy for the whole model is 99.92%, which is competitive and comparable with state-of-the-art algorithms.


2012 ◽  
Vol 263-266 ◽  
pp. 2173-2178
Author(s):  
Xin Guang Li ◽  
Min Feng Yao ◽  
Li Rui Jian ◽  
Zhen Jiang Li

A probabilistic neural network (PNN) speech recognition model based on the partition clustering algorithm is proposed in this paper. The most important advantage of PNN is that training is easy and instantaneous. Therefore, PNN is capable of dealing with real time speech recognition. Besides, in order to increase the performance of PNN, the selection of data set is one of the most important issues. In this paper, using the partition clustering algorithm to select data is proposed. The proposed model is tested on two data sets from the field of spoken Arabic numbers, with promising results. The performance of the proposed model is compared to single back propagation neural network and integrated back propagation neural network. The final comparison result shows that the proposed model performs better than the other two neural networks, and has an accuracy rate of 92.41%.


2021 ◽  
Vol 16 ◽  
Author(s):  
Di Gai ◽  
Xuanjing Shen ◽  
Haipeng Chen

Background: The effective classification of the melting curve is conducive to measure the specificity of the amplified products and the influence of invalid data on subsequent experiments is excluded. Objective: In this paper, a convolutional neural network (CNN) classification model based on dynamic filter is proposed, which can categorize the number of peaks in the melting curve image and distinguish the pollution data represented by the noise peaks. Method: The main advantage of the proposed model is that it adopts the filter which changes with the input and uses the dynamic filter to capture more information in the image, making the network learning more accurate. In addition, the residual module is used to extract the characteristics of the melting curve, and the pooling operation is replaced with an atrous convolution to prevent the loss of context information. Result: In order to train the proposed model, a novel melting curve dataset is created, which includes a balanced dataset and an unbalanced dataset. The proposed method uses six classification-based assessment criteria to compare with seven representative methods based on deep learning. Experimental results show that proposed method is not only markedly outperforms the other state-of-the-art methods in accuracy, but also has much less running time. Conclusion: It evidently proves that the proposed method is suitable for judging the specificity of amplification products according to the melting curve. Simultaneously, it overcomes the difficulties of manual selection with low efficiency and artificial bias.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yinjie Xie ◽  
Wenxin Dai ◽  
Zhenxin Hu ◽  
Yijing Liu ◽  
Chuan Li ◽  
...  

Among many improved convolutional neural network (CNN) architectures in the optical image classification, only a few were applied in synthetic aperture radar (SAR) automatic target recognition (ATR). One main reason is that direct transfer of these advanced architectures for the optical images to the SAR images easily yields overfitting due to its limited data set and less features relative to the optical images. Thus, based on the characteristics of the SAR image, we proposed a novel deep convolutional neural network architecture named umbrella. Its framework consists of two alternate CNN-layer blocks. One block is a fusion of six 3-layer paths, which is used to extract diverse level features from different convolution layers. The other block is composed of convolution layers and pooling layers are mainly utilized to reduce dimensions and extract hierarchical feature information. The combination of the two blocks could extract rich features from different spatial scale and simultaneously alleviate overfitting. The performance of the umbrella model was validated by the Moving and Stationary Target Acquisition and Recognition (MSTAR) benchmark data set. This architecture could achieve higher than 99% accuracy for the classification of 10-class targets and higher than 96% accuracy for the classification of 8 variants of the T72 tank, even in the case of diverse positions located by targets. The accuracy of our umbrella is superior to the current networks applied in the classification of MSTAR. The result shows that the umbrella architecture possesses a very robust generalization capability and will be potential for SAR-ART.


2020 ◽  
Vol 10 (6) ◽  
pp. 1999 ◽  
Author(s):  
Milica M. Badža ◽  
Marko Č. Barjaktarović

The classification of brain tumors is performed by biopsy, which is not usually conducted before definitive brain surgery. The improvement of technology and machine learning can help radiologists in tumor diagnostics without invasive measures. A machine-learning algorithm that has achieved substantial results in image segmentation and classification is the convolutional neural network (CNN). We present a new CNN architecture for brain tumor classification of three tumor types. The developed network is simpler than already-existing pre-trained networks, and it was tested on T1-weighted contrast-enhanced magnetic resonance images. The performance of the network was evaluated using four approaches: combinations of two 10-fold cross-validation methods and two databases. The generalization capability of the network was tested with one of the 10-fold methods, subject-wise cross-validation, and the improvement was tested by using an augmented image database. The best result for the 10-fold cross-validation method was obtained for the record-wise cross-validation for the augmented data set, and, in that case, the accuracy was 96.56%. With good generalization capability and good execution speed, the new developed CNN architecture could be used as an effective decision-support tool for radiologists in medical diagnostics.


2020 ◽  
Vol 17 (8) ◽  
pp. 3567-3576
Author(s):  
Venigalla Sai Teja ◽  
Chilakapati Srinivas ◽  
P. Radhika

Humans can recognize the plants infected by diseases but separated from our visual perception it is hard to recognize plant diseases. In croplands without taking the right care and prompt action, the entire field may become a region afflicted by diseases. So we identify the plant diseases ahead of time with the assistance of present-day computer technologies. An advanced model was introduced to accurately recognize and classification plant diseases. Here we proposed an approach that can use the Convolutional Neural Network (CNN) based on BFOA for distinguishing diseases in plants. The input picture for the extraction of features is divided into 3 clusters by the Euclidean distance measurement metric of the k-mean algorithm and from the ROI, parameters of the GLCM matrix are calculated in the same cluster prior to BFOA. Assigning matrix parameters as BFOA input improves the network’s accuracy and efficiency in determining. In classification, we proposed a Convolutional Neural Network (CNN) using ResNet50 as a pre-trained network in deep learning toolbox which classifies from a given dataset. The approach is more reliable as the detection and classification of plant diseases are more precise.


2021 ◽  
Author(s):  
Carlos Manuel Viriato Neto ◽  
Luca Garcia Honorio ◽  
Eduardo Aguiar

This paper focuses on the new model of classification of wagon bogie springs condition through images acquired by a wayside equipment. As such, we are discussing the application of a deep rule-based (DRB) classifier learning approach to achieve ahigh classification of a bogie, and check if they either have spring problems or not. We use a pre-trained VGG19 deep convolutional neural network to extract the attributes from images to be used as input to the classifiers. The performance is calculated based on the data set composed of images provided by a Brazilian railway company. The presented results of the report demonstrate the relative performance of applying the DRB classifier to the questions raised.


Author(s):  
Pranav Kale ◽  
Mayuresh Panchpor ◽  
Saloni Dingore ◽  
Saloni Gaikwad ◽  
Prof. Dr. Laxmi Bewoor

In today's world, deep learning fields are getting boosted with increasing speed. Lot of innovations and different algorithms are being developed. In field of computer vision, related to autonomous driving sector, traffic signs play an important role to provide real time data of an environment. Different algorithms were developed to classify these Signs. But performance still needs to improve for real time environment. Even the computational power required to train such model is high. In this paper, Convolutional Neural Network model is used to Classify Traffic Sign. The experiments are conducted on a real-world data set with images and videos captured from ordinary car driving as well as on GTSRB dataset [15] available on Kaggle. This proposed model is able to outperform previous models and resulted with accuracy of 99.6% on validation set. This idea has been granted Innovation Patent by Australian IP to Authors of this Research Paper. [24]


2021 ◽  
Vol 24 (2) ◽  
pp. 64-71
Author(s):  
Reem Mohammed Jasim Al-Akkam ◽  
◽  
Mohammed Sahib Mahdi Altaei ◽  

Agriculture is one of the most important professions in many countries, including Iraq, as the Iraqi financial system depends on agricultural production and great attention should be paid to concerns about agricultural production. Because plants are exposed to many diseases and monitoring plant diseases with the help of specialists in the agricultural region can be very expensive. There is a need for a system capable of automatically detecting diseases. The aim of the research proposed is to create a model that classifies and predicts leaf diseases in plants. This model is based on a convolution network, which is a kind of deep learning. The dataset used in this study called (Plant Village) was downloaded from the kaggle website. The dataset contains 34,934 RGB images, and the deep CNN model can efficiently classify 15 different classes of healthy and diseased plants using the leaf images. The model used techniques to augment data and dropout. The Soft max output layer was used with the categorical cross-entropy loss function to apply the CNN model proposed with the Adam optimization technique. The results obtained by the proposed model were 97.42% in the training phase and 96.18% in the testing phase.


2019 ◽  
Vol 8 (4) ◽  
pp. 11416-11421

Batik is one of the Indonesian cultural heritages that has been recognized by the global community. Indonesian batik has a vast diversity in motifs that illustrate the philosophy of life, the ancestral heritage and also reflects the origin of batik itself. Because of the manybatik motifs, problems arise in determining the type of batik itself. Therefore, we need a classification method that can classify various batik motifs automatically based on the batik images. The technique of image classification that is used widely now is deep learning method. This technique has been proven of its capacity in identifying images in high accuracy. Architecture that is widely used for the image data analysis is Convolutional Neural Network (CNN) because this architecture is able to detect and recognize objects in an image. This workproposes to use the method of CNN and VGG architecture that have been modified to overcome the problems of classification of the batik motifs. Experiments of using 2.448 batik images from 5 classes of batik motifs showed that the proposed model has successfully achieved an accuracy of 96.30%.


Sign in / Sign up

Export Citation Format

Share Document