Power Factor Corrected Cuk Converter with PI and Fuzzy Logic Controller

Author(s):  
Alok Kumar Mishra ◽  
Akshaya Kumar Patra ◽  
Ramachandra Agrawal ◽  
Narayan Nahak ◽  
Amaresh Gantayet ◽  
...  
Author(s):  
Sanatan Kumar ◽  
Debanjan Roy ◽  
Madhu Singh

<span>This paper presents a PFC (Power Factor Correction) Cuk converter fed BLDC (Brushless DC) motor drive and the speed of BLDC motor is controlled using fuzzy logic implementation. The PFC converters are employed to enhance the power quality. The Brushless DC motor speed is under the control of DC-bus voltage of VSI-Voltage Source Inverter in which switching of low frequency is used. This helps in the electronic commutation of BLDC motors thus decreasing the switching losses in VSI. A DBR (Diode Bridge Rectifier) next to the PFC Cuk converter controls the voltage at DC link maintaining unity power factor. The characteristics of Cuk converter in four dissimilar modes of operation are studied such as continuous and discontinuous conduction modes (CCM and DCM) respectively. The entire system is simulated using Matlab/Simulink software and the simulation results are reported to verify the performance investigation of the proposed system.</span>


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 288 ◽  
Author(s):  
Kuditi Kamalapathi ◽  
Neeraj Priyadarshi ◽  
Sanjeevikumar Padmanaban ◽  
Jens Holm-Nielsen ◽  
Farooque Azam ◽  
...  

This research work deals with a hybrid control system based integrated Cuk converter fed brushless DC motor (BLDCM) for power factor correction. In this work, moth-flame optimization (MFO) and a fuzzy logic controller (FLC) have been combined and a moth-flame fuzzy logic controller (MFOFLC) has been proposed. Firstly, the BLDC motor modeling is composed with the power factor correction (PFC) based integrated Cuk converter and BLDC speed is regulated using variable DC-Link inverter voltage which results in a low switching operation with fewer switched losses. Here, with the use of a switched inductor, the task and execution of the proposed converter is redesigned. The DBR (diode bridge rectifier) trailed by a proposed PFC based integrated Cuk converter operates in discontinuous inductor conduction mode (DICM) for achievement of better power factor. MFO is exhibited for gathering of a dataset from the input voltage signal. At that point, separated datasets are sent to the FLC to improve the updating function and minimization of torque ripple. However, our main objective is to assess adequacy of the proposed method, but the power factor broke down. The execution of the proposed control methodology is executed in the MATLAB/Simulink working platform and the display is assessed with the existing techniques.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550102 ◽  
Author(s):  
P. M. Dhanasekaran ◽  
R. Balamurugan ◽  
P. Veena ◽  
R. Nithya

A new single phase bridgeless power factor correction (PFC) converter derived from CUK topology is proposed. In this new CUK converter, the absence of the front end diode bridge results in the less switching and conduction losses compared to the conventional PFC converter. The current flow in the proposed converter configuration has only two semiconductor switches and it results in less conduction loss during each interval of the switching cycle. It offers less input current ripple, less electromagnetic interference (EMI) and also protection against the starting inrush current. It is mostly preferred compared to the other PFC topologies since it has both continuous input and output currents with a reduced current ripple. The proposed converter uses the simple control strategy and is made to work in the discontinuous conduction mode (DCM) to achieve almost a unity power factor. It also offers zero current turn ON and turn OFF for power switches. The performance of the proposed PFC converter is tested in MATLAB/SIMULINK environment with fuzzy logic controller (FLC). The simulation results of the proposed new CUK PFC converter validate the effectiveness of FLC in power factor enhancement.


Author(s):  
Alok Kumar Mishra ◽  
Ramachandra Agrawal ◽  
Akshaya Kumar Patra ◽  
Jnana Ranjan Swain ◽  
Samarjeet Satapathy ◽  
...  

Author(s):  
K. Kamalapathi ◽  
Neeraj Priyadarshi ◽  
Sanjeevikumar Padmanaban ◽  
Farooque Azam ◽  
C. Umayal ◽  
...  

This research work deals hybrid control system based integrated Cuk converter fed brushless DC motor (BLDCM) for power factor correction. In this work, moth-flame optimization (MFO) and fuzzy logic controller (FLC) has been combined and moth &ndash;flame fuzzy logic controller (MFOFLC) has been proposed. Firstly, the BLDC motor modelling is composed with power factor correction (PFC) based integrated Cuk converter and BLDC speed is regulated using variable DC-Link inverter voltage which makes low switching operation with less switched losses. Here, with the use of switched inductor, the task and execution of proposed converter is redesigned. The DBR (diode bridge rectifier) trailed by proposed PFC based integrated Cuk converter operates in discontinuous inductor conduction mode(DICM) for achievement of better power factor.MFO is exhibited for gathering of dataset from the input voltage signal. At that point separated datasets is send to FLC to improve the updating function and minimization of torque ripple. However, our main objective is to assess adequacy of proposed method, the power factor is broke down. The execution of the proposed control methodology is executed in MATLAB/Simulink working platform and the display is assessed with the existing techniques.


Sign in / Sign up

Export Citation Format

Share Document