scholarly journals A fuzzy logic controller based brushless DC motor using PFC cuk converter

Author(s):  
Sanatan Kumar ◽  
Debanjan Roy ◽  
Madhu Singh

<span>This paper presents a PFC (Power Factor Correction) Cuk converter fed BLDC (Brushless DC) motor drive and the speed of BLDC motor is controlled using fuzzy logic implementation. The PFC converters are employed to enhance the power quality. The Brushless DC motor speed is under the control of DC-bus voltage of VSI-Voltage Source Inverter in which switching of low frequency is used. This helps in the electronic commutation of BLDC motors thus decreasing the switching losses in VSI. A DBR (Diode Bridge Rectifier) next to the PFC Cuk converter controls the voltage at DC link maintaining unity power factor. The characteristics of Cuk converter in four dissimilar modes of operation are studied such as continuous and discontinuous conduction modes (CCM and DCM) respectively. The entire system is simulated using Matlab/Simulink software and the simulation results are reported to verify the performance investigation of the proposed system.</span>

Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 288 ◽  
Author(s):  
Kuditi Kamalapathi ◽  
Neeraj Priyadarshi ◽  
Sanjeevikumar Padmanaban ◽  
Jens Holm-Nielsen ◽  
Farooque Azam ◽  
...  

This research work deals with a hybrid control system based integrated Cuk converter fed brushless DC motor (BLDCM) for power factor correction. In this work, moth-flame optimization (MFO) and a fuzzy logic controller (FLC) have been combined and a moth-flame fuzzy logic controller (MFOFLC) has been proposed. Firstly, the BLDC motor modeling is composed with the power factor correction (PFC) based integrated Cuk converter and BLDC speed is regulated using variable DC-Link inverter voltage which results in a low switching operation with fewer switched losses. Here, with the use of a switched inductor, the task and execution of the proposed converter is redesigned. The DBR (diode bridge rectifier) trailed by a proposed PFC based integrated Cuk converter operates in discontinuous inductor conduction mode (DICM) for achievement of better power factor. MFO is exhibited for gathering of a dataset from the input voltage signal. At that point, separated datasets are sent to the FLC to improve the updating function and minimization of torque ripple. However, our main objective is to assess adequacy of the proposed method, but the power factor broke down. The execution of the proposed control methodology is executed in the MATLAB/Simulink working platform and the display is assessed with the existing techniques.


Author(s):  
K. Kamalapathi ◽  
Neeraj Priyadarshi ◽  
Sanjeevikumar Padmanaban ◽  
Farooque Azam ◽  
C. Umayal ◽  
...  

This research work deals hybrid control system based integrated Cuk converter fed brushless DC motor (BLDCM) for power factor correction. In this work, moth-flame optimization (MFO) and fuzzy logic controller (FLC) has been combined and moth &ndash;flame fuzzy logic controller (MFOFLC) has been proposed. Firstly, the BLDC motor modelling is composed with power factor correction (PFC) based integrated Cuk converter and BLDC speed is regulated using variable DC-Link inverter voltage which makes low switching operation with less switched losses. Here, with the use of switched inductor, the task and execution of proposed converter is redesigned. The DBR (diode bridge rectifier) trailed by proposed PFC based integrated Cuk converter operates in discontinuous inductor conduction mode(DICM) for achievement of better power factor.MFO is exhibited for gathering of dataset from the input voltage signal. At that point separated datasets is send to FLC to improve the updating function and minimization of torque ripple. However, our main objective is to assess adequacy of proposed method, the power factor is broke down. The execution of the proposed control methodology is executed in MATLAB/Simulink working platform and the display is assessed with the existing techniques.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3989-3993

This research Paper proposes the Brushless DC motors control (BLDC) could accomplish higher execution looking into effectiveness in examination for old brushed DC motor controlling which is difficult to control because it requires a phase for switching circuit. This work proposes a fuzzy logic control for brushless DC motor for axis based on Hall Effect by applying sensor control system and also it produces brushless motor for rearranging the three phase conduction mode model. At long last this paper may be with create efficient control methodologies on enhance driving dynamics on the mechanical dynamic consider of propulsion method. The recommended control method stabilizes those controls services (speeds) done by controller of brushless DC motor drive (BLDC). On behalf of settling 2 wheels also physical favorable circumstances of BLDC motors are associated straight forwardly of the tires by improving the rotor speed. The parameters such as power factor, rotor speed, torque ripple, EMF is compensated & simulation results are tabulated.


Power factor rectification converter (PFRC) hinged bridgeless modified CUK (MCUK) converter supplied to brushless DC engine drive utilizing an Artificial Neural Network controller. Presently, alteration for traditional CUK converter can be obtained through adding a voltage multiplier circuit, to decrease converter losses for wide variation of speed to accomplish most extreme Power Factor and to limit the Total Harmonic Distortion (THD). The designed bridgeless PFRC based converter was investigated hypothetically to obtain the circumstances, for example, Power factor (PF) and Total Harmonic Distortion (THD) are assessed and contrasted with traditional Diode Bridge Rectifier hinged CUK converter supplying to brushless DC motor drive and bridgeless altered CUK using PI controller driven brushless DC motor. Here, simulation results uncover that the ANN controllers are viable and productive contrasted with PI controller, as the steady state error when ANN control used is less and the stabilization of the system is better while using it. Additionally in ANN system, the time to perform calculation is less as there are no numerical models. The performance of the designed framework is simulated in MATLAB/Simulink environment.


Author(s):  
A. Purna Chandra Rao ◽  
Y.P. Obulesh ◽  
Ch. Sai Babu

Earlier for variable speed application conventional motors were used, but these motors have poor characteristics. These drawbacks were overcome by brushless Dc motor drive. Now days in most of the applications such as industrial, domestic, aerospace, defense, medical and traction etc, brushless DC motor (BLDCM) is popular for its high efficiency, high torque to weight ratio, small size, and high reliability, ease of control and low maintenance etc. BLDC motor is a electronic commutator driven drive i.e. it uses a three-phase voltage source inverter for its operation, electronic devices means there is a problem of poor power quality, more torque ripple and speed fluctuations. This paper deals with the CUK converter two leg inverter fed BLDCM drive in closed loop operation. The proposed control strategy on CUK converter two leg inverter fed BLDCM drive with split DC source is modeled and implemented using MATLAB / Simulink. The proposed method improves the efficiency of the drive system with Power factor correction feature in wide range of the speed control, less torque ripple and smooth speed control.


Jurnal METTEK ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 11
Author(s):  
Wayan Widhiada ◽  
Made Widiyarta ◽  
K.P. Arya Utama

Brushless DC motor adalah salah satu jenis motor sinkron yang diberi arus DC yang bersumber dari inverter atau power supply. Motor AC menghasilkan arus AC yang dapat menggerakan motor. Pada dasarnya kecepatan motor dapat di atur menggunakan kontroler yang menghitung seberapa besar keluaran yang harus dihasilkan. Pada umumnya input dari kontroler berupa tuas (naik – turun atau putar) dan tombol untuk input awalnya. Oleh Karena itu dilakukan penelitian untuk mengganti input yang mengatur kecepatan motor BLDC. Kontrol kecepatan motor BLDC berbasis logika fuzzy adalah suatu system kontrol yang mengganti input main stream dari kontroler menjadi sensor beban, dan dimana pembacaanya akan dikontrol oleh logika fuzzy untuk mengatur control kecepatan motor BLDC. Penelitian dilakukan dengan dua cara yaitu simulasi dan eksperimen prototype dengan pemberian beban pada sensor yaitu 10 kg, 20 kg, 30 kg, 40 kg dan 50 kg sebagai inputnya. Hasil dari pengujian dan penghitungan yang didapat pada setiap pembebanan menghasilkan kecepatan yang stabil yaitu rata – rata 0.25 detik dengan kecepatan yang hamper setara dengan referensinya. Error pada kecepatan yang dihasilkan antara simulasi dan prototype sangat kecil yaitu kurang dari 1% pada masing – masing pembebanan. Brushless DC motor is one type of synchronous motor that is given a DC current from the inverter or power supply sourced. It produces an AC current that can drive the motor. Basically the motor speed can be set using a controller to compute the result of output. In general, the input from the controller is like a handle (up – down or twist) and a button for initial input. Therefore the research has changed the input that regulates the speed of the BLDC motor. BLDC motor speed is controlled based on fuzzy logic. Fuzzy logic is a control who help load sensor to replace the mainstream input like handle, and where the reader will be directed by logic to determine the speed of the BLDC motor. The research is carried out in two techniques, called simulation and experiment. The prototype is testing with the load on 10 kg, 20 kg, 30 kg, 40 kg and 50 kg as an input. The results of the tests is obtained at each loading resulted in a stable speed which is an average of 0.25 seconds with a speed that is almost the same as the reference. The error signal of the speed is produced between the simulation and prototype is very small, which is less than 1% in each load.


Sign in / Sign up

Export Citation Format

Share Document