Different Cell Decomposition Path Planning Methods for Unmanned Air Vehicles-A Review

Author(s):  
Sanjoy Kumar Debnath ◽  
Rosli Omar ◽  
Susama Bagchi ◽  
Elia Nadira Sabudin ◽  
Mohd Haris Asyraf Shee Kandar ◽  
...  
Author(s):  
W. Liu

Planning the path is the most important task in the mobile robot navigation. This task involves basically three aspects. First, the planned path must run from a given starting point to a given endpoint. Secondly, it should ensure robot’s collision-free movement. Thirdly, among all the possible paths that meet the first two requirements it must be, in a certain sense, optimal.Methods of path planning can be classified according to different characteristics. In the context of using intelligent technologies, they can be divided into traditional methods and heuristic ones. By the nature of the environment, it is possible to divide planning methods into planning methods in a static environment and in a dynamic one (it should be noted, however, that a static environment is rare). Methods can also be divided according to the completeness of information about the environment, namely methods with complete information (in this case the issue is a global path planning) and methods with incomplete information (usually, this refers to the situational awareness in the immediate vicinity of the robot, in this case it is a local path planning). Note that incomplete information about the environment can be a consequence of the changing environment, i.e. in a dynamic environment, there is, usually, a local path planning.Literature offers a great deal of methods for path planning where various heuristic techniques are used, which, as a rule, result from the denotative meaning of the problem being solved. This review discusses the main approaches to the problem solution. Here we can distinguish five classes of basic methods: graph-based methods, methods based on cell decomposition, use of potential fields, optimization methods, фтв methods based on intelligent technologies.Many methods of path planning, as a result, give a chain of reference points (waypoints) connecting the beginning and end of the path. This should be seen as an intermediate result. The problem to route the reference points along the constructed chain arises. It is called the task of smoothing the path, and the review addresses this problem as well.


2019 ◽  
Vol 91 (9) ◽  
pp. 1245-1255 ◽  
Author(s):  
Samia Ben Amarat ◽  
Peng Zong

Purpose This paper aims to present a comprehensive review in major research areas of unmanned air vehicles (UAVs) navigation, i.e. three degree-of-freedom (3D) path planning, routing algorithm and routing protocols. The paper is further aimed to provide a meaningful comparison among these algorithms and methods and also intend to find the best ones for a particular application. Design/methodology/approach The major UAV navigation research areas are further classified into different categories based on methods and models. Each category is discussed in detail with updated research work done in that very domain. Performance evaluation criteria are defined separately for each category. Based on these criteria and research challenges, research questions are also proposed in this work and answered in discussion according to the presented literature review. Findings The research has found that conventional and node-based algorithms are a popular choice for path planning. Similarly, the graph-based methods are preferred for route planning and hybrid routing protocols are proved better in providing performance. The research has also found promising areas for future research directions, i.e. critical link method for UAV path planning and queuing theory as a routing algorithm for large UAV networks. Originality/value The proposed work is a first attempt to provide a comprehensive study on all research aspects of UAV navigation. In addition, a comparison of these methods, algorithms and techniques based on standard performance criteria is also presented the very first time.


Author(s):  
Elia Nadira Sabudin ◽  
Rosli Omar ◽  
Sanjoy Kumar Debnath ◽  
Muhammad Suhaimi Sulong

<span lang="EN-US">Path planning is crucial for a robot to be able to reach a target point safely to accomplish a given mission. In path planning, three essential criteria have to be considered namely path length, computational complexity and completeness. Among established path planning methods are voronoi diagram (VD), cell decomposition (CD), probability roadmap (PRM), visibility graph (VG) and potential field (PF). The above-mentioned methods could not fulfill all three criteria simultaneously which limits their application in optimal and real-time path planning. This paper proposes a path PF-based planning algorithm called dynamic artificial PF (DAPF). The proposed algorithm is capable of eliminating the local minima that frequently occurs in the conventional PF while fulfilling the criterion of path planning. DAPF also integrates path pruning to shorten the planned path. In order to evaluate its performance, DAPF has been simulated and compared with VG in terms of path length and computational complexity. It is found that DAPF is consistent in generating paths with low computation time in obstacle-rich environments compared to VG. The paths produced also are nearly optimal with respect to VG.</span>


Sign in / Sign up

Export Citation Format

Share Document