scholarly journals Efficient robotic path planning algorithm based on artificial potential field

Author(s):  
Elia Nadira Sabudin ◽  
Rosli Omar ◽  
Sanjoy Kumar Debnath ◽  
Muhammad Suhaimi Sulong

<span lang="EN-US">Path planning is crucial for a robot to be able to reach a target point safely to accomplish a given mission. In path planning, three essential criteria have to be considered namely path length, computational complexity and completeness. Among established path planning methods are voronoi diagram (VD), cell decomposition (CD), probability roadmap (PRM), visibility graph (VG) and potential field (PF). The above-mentioned methods could not fulfill all three criteria simultaneously which limits their application in optimal and real-time path planning. This paper proposes a path PF-based planning algorithm called dynamic artificial PF (DAPF). The proposed algorithm is capable of eliminating the local minima that frequently occurs in the conventional PF while fulfilling the criterion of path planning. DAPF also integrates path pruning to shorten the planned path. In order to evaluate its performance, DAPF has been simulated and compared with VG in terms of path length and computational complexity. It is found that DAPF is consistent in generating paths with low computation time in obstacle-rich environments compared to VG. The paths produced also are nearly optimal with respect to VG.</span>

2013 ◽  
Vol 373-375 ◽  
pp. 246-254 ◽  
Author(s):  
Mohamed Elbanhawi ◽  
Milan Simic ◽  
Reza Jazar

Developing algorithms that allow robots to independently navigate unknown environments is a widely researched area of robotics. The potential for autonomous mobile robots use, in industrial and military applications, is boundless. Path planning entails computing a collision free path from a robots current position to a desired target. The problem of path planning for these robots remains underdeveloped. Computational complexity, path optimization and robustness are some of the issues that arise. Current algorithms do not generate general solutions for different situations and require user experience and optimization. Classical algorithms are computationally extensive. This reduces the possibility of their use in real time applications. Additionally, classical algorithms do not allow for any control over attributes of the generated path. A new roadmap path planning algorithm is proposed in this paper. This method generates waypoints, through which the robot can avoid obstacles and reach its goal. At the heart of this algorithm is a method to control the distance of the waypoints from obstacles, without increasing its computational complexity. Several simulations were run to illustrate the robustness and adaptability of this approach, compared to the most commonly used path planning methods.


2020 ◽  
Vol 83 (1) ◽  
pp. 133-143
Author(s):  
Sanjoy Kumar Debnath ◽  
Rosli Omar ◽  
Nor Badariyah Abdul Latip ◽  
Susama Bagchi ◽  
Elia Nadira Sabudin ◽  
...  

This paper analyses an experimental path planning performance between the Iterative Equilateral Space Oriented Visibility Graph (IESOVG) and conventional Visibility Graph (VG) algorithms in terms of computation time and path length for an autonomous vehicle. IESOVG is a path planning algorithm that was proposed to overcome the limitations of VG which is slow in obstacle-rich environment. The performance assessment was done in several identical scenarios through simulation. The results showed that the proposed IESOVG algorithm was much faster in comparison to VG. In terms of path length, IESOVG was found to have almost similar performance with VG.  It was also found that IESOVG was complete as it could find a collision-free path in all scenarios.


2021 ◽  
Vol 9 (3) ◽  
pp. 252
Author(s):  
Yushan Sun ◽  
Xiaokun Luo ◽  
Xiangrui Ran ◽  
Guocheng Zhang

This research aims to solve the safe navigation problem of autonomous underwater vehicles (AUVs) in deep ocean, which is a complex and changeable environment with various mountains. When an AUV reaches the deep sea navigation, it encounters many underwater canyons, and the hard valley walls threaten its safety seriously. To solve the problem on the safe driving of AUV in underwater canyons and address the potential of AUV autonomous obstacle avoidance in uncertain environments, an improved AUV path planning algorithm based on the deep deterministic policy gradient (DDPG) algorithm is proposed in this work. This method refers to an end-to-end path planning algorithm that optimizes the strategy directly. It takes sensor information as input and driving speed and yaw angle as outputs. The path planning algorithm can reach the predetermined target point while avoiding large-scale static obstacles, such as valley walls in the simulated underwater canyon environment, as well as sudden small-scale dynamic obstacles, such as marine life and other vehicles. In addition, this research aims at the multi-objective structure of the obstacle avoidance of path planning, modularized reward function design, and combined artificial potential field method to set continuous rewards. This research also proposes a new algorithm called deep SumTree-deterministic policy gradient algorithm (SumTree-DDPG), which improves the random storage and extraction strategy of DDPG algorithm experience samples. According to the importance of the experience samples, the samples are classified and stored in combination with the SumTree structure, high-quality samples are extracted continuously, and SumTree-DDPG algorithm finally improves the speed of the convergence model. Finally, this research uses Python language to write an underwater canyon simulation environment and builds a deep reinforcement learning simulation platform on a high-performance computer to conduct simulation learning training for AUV. Data simulation verified that the proposed path planning method can guide the under-actuated underwater robot to navigate to the target without colliding with any obstacles. In comparison with the DDPG algorithm, the stability, training’s total reward, and robustness of the improved Sumtree-DDPG algorithm planner in this study are better.


2018 ◽  
Vol 159 ◽  
pp. 02029 ◽  
Author(s):  
Chang Kyu Kim ◽  
Huy Hung Nguyen ◽  
Dae Hwan Kim ◽  
Hak Kyeong Kim ◽  
Sang Bong Kim

In path planning field, Automatic guided vehicle (AGV) has to move from an initial point towards a target point with capability to avoid obstacles. There are A*, D* and D* lite path planning algorithms in the path planning algorithm. This paper proposes a modified D* lite path planning algorithm using the most efficient D* lite among these algorithms. The modified D* lite path planning algorithm is to improve these D* lite path planning algorithm’s weaknesses such as traversing across obstacles sharp corners, or traversing between two obstacles. To do this task, the followings are done. First, a work space is divided into square cells. Second, cost of each edge connecting current node to neighbor nodes is calculated. Third, the shortest paths from the initial point to all multiple target points are computed and the shortest paths from any target point to remaining target points including the goal point are computed by using Hamilton path. Fourth, a cost-minimal path is re-calculated as soon as the laser sensor detects an obstacle and make an updated list of target points. Finally, the validity of the proposed modified D* lite path planning algorithm is verified through simulation and experimental results.


Author(s):  
Amr Mohamed ◽  
Moustafa El-Gindy ◽  
Jing Ren ◽  
Haoxiang Lang

This paper presents an optimal collision-free path planning algorithm of an autonomous multi-wheeled combat vehicle using optimal control theory and artificial potential field function (APF). The optimal path of the autonomous vehicle between a given starting and goal points is generated by an optimal path planning algorithm. The cost function of the path planning is solved together with vehicle dynamics equations to satisfy the vehicle dynamics constraints and the boundary conditions. For this purpose, a simplified four-axle bicycle model of the actual vehicle considering the vehicle body lateral and yaw dynamics while neglecting roll dynamics is used. The obstacle avoidance technique is mathematically modeled based on the proposed sigmoid function as the artificial potential field method. This potential function is assigned to each obstacle as a repulsive potential field. The inclusion of these potential fields results in a new APF which controls the steering angle of the autonomous vehicle to reach the goal point. A full nonlinear multi-wheeled combat vehicle model in TruckSim software is used for validation. This is done by importing the generated optimal path data from the introduced optimal path planning MATLAB algorithm and comparing lateral acceleration, yaw rate and curvature at different speeds (9 km/h, 28 km/h) for both simplified and TruckSim vehicle model. The simulation results show that the obtained optimal path for the autonomous multi-wheeled combat vehicle satisfies all vehicle dynamics constraints and successfully validated with TruckSim vehicle model.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zihan Yu ◽  
Linying Xiang

In recent years, the path planning of robot has been a hot research direction, and multirobot formation has practical application prospect in our life. This article proposes a hybrid path planning algorithm applied to robot formation. The improved Rapidly Exploring Random Trees algorithm PQ-RRT ∗ with new distance evaluation function is used as a global planning algorithm to generate the initial global path. The determined parent nodes and child nodes are used as the starting points and target points of the local planning algorithm, respectively. The dynamic window approach is used as the local planning algorithm to avoid dynamic obstacles. At the same time, the algorithm restricts the movement of robots inside the formation to avoid internal collisions. The local optimal path is selected by the evaluation function containing the possibility of formation collision. Therefore, multiple mobile robots can quickly and safely reach the global target point in a complex environment with dynamic and static obstacles through the hybrid path planning algorithm. Numerical simulations are given to verify the effectiveness and superiority of the proposed hybrid path planning algorithm.


Sign in / Sign up

Export Citation Format

Share Document