A Robust Method for Multi-algorithmic Palmprint Recognition Using Exponential Genetic Algorithm-Based Feature Selection

Author(s):  
Aruna Kumari Palisetty ◽  
Jaya Suma Gogulamanda
2012 ◽  
Vol 57 (3) ◽  
pp. 829-835 ◽  
Author(s):  
Z. Głowacz ◽  
J. Kozik

The paper describes a procedure for automatic selection of symptoms accompanying the break in the synchronous motor armature winding coils. This procedure, called the feature selection, leads to choosing from a full set of features describing the problem, such a subset that would allow the best distinguishing between healthy and damaged states. As the features the spectra components amplitudes of the motor current signals were used. The full spectra of current signals are considered as the multidimensional feature spaces and their subspaces are tested. Particular subspaces are chosen with the aid of genetic algorithm and their goodness is tested using Mahalanobis distance measure. The algorithm searches for such a subspaces for which this distance is the greatest. The algorithm is very efficient and, as it was confirmed by research, leads to good results. The proposed technique is successfully applied in many other fields of science and technology, including medical diagnostics.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Minh Hieu Nguyen ◽  
Phi Le Nguyen ◽  
Kien Nguyen ◽  
Van An Le ◽  
Thanh-Hung Nguyen ◽  
...  

Author(s):  
Uttamarani Pati ◽  
Papia Ray ◽  
Arvind R. Singh

Abstract Very short term load forecasting (VSTLF) plays a pivotal role in helping the utility workers make proper decisions regarding generation scheduling, size of spinning reserve, and maintaining equilibrium between the power generated by the utility to fulfil the load demand. However, the development of an effective VSTLF model is challenging in gathering noisy real-time data and complicates features found in load demand variations from time to time. A hybrid approach for VSTLF using an incomplete fuzzy decision system (IFDS) combined with a genetic algorithm (GA) based feature selection technique for load forecasting in an hour ahead format is proposed in this research work. This proposed work aims to determine the load features and eliminate redundant features to form a less complex forecasting model. The proposed method considers the time of the day, temperature, humidity, and dew point as inputs and generates output as forecasted load. The input data and historical load data are collected from the Northern Regional Load Dispatch Centre (NRLDC) New Delhi for December 2009, January 2010 and February 2010. For validation of proposed method efficacy, it’s performance is further compared with other conventional AI techniques like ANN and ANFIS, which are integrated with genetic algorithm-based feature selection technique to boost their performance. These techniques’ accuracy is tested through their mean absolute percentage error (MAPE) and normalized root mean square error (nRMSE) value. Compared to other conventional AI techniques and other methods provided through previous studies, the proposed method is found to have acceptable accuracy for 1 h ahead of electrical load forecasting.


2020 ◽  
Vol 16 (2) ◽  
Author(s):  
Stanisław Karkosz ◽  
Marcin Jukiewicz

AbstractObjectivesOptimization of Brain-Computer Interface by detecting the minimal number of morphological features of signal that maximize accuracy.MethodsSystem of signal processing and morphological features extractor was designed, then the genetic algorithm was used to select such characteristics that maximize the accuracy of the signal’s frequency recognition in offline Brain-Computer Interface (BCI).ResultsThe designed system provides higher accuracy results than a previously developed system that uses the same preprocessing methods, however, different results were achieved for various subjects.ConclusionsIt is possible to enhance the previously developed BCI by combining it with morphological features extraction, however, it’s performance is dependent on subject variability.


2021 ◽  
pp. 102448
Author(s):  
Zahid Halim ◽  
Muhammad Nadeem Yousaf ◽  
Muhammad Waqas ◽  
Muhammad Suleman ◽  
Ghulam Abbas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document