Optimal Design of Structure with Specified Fundamental Natural Frequency Using Topology Optimization

Author(s):  
Kandula Eswara Sai Kumar ◽  
Sourav Rakshit
2013 ◽  
Vol 785-786 ◽  
pp. 1258-1261
Author(s):  
In Pyo Cha ◽  
Hee Jae Shin ◽  
Neung Gu Lee ◽  
Lee Ku Kwac ◽  
Hong Gun Kim

Topology optimization and shape optimization of structural optimization techniques are applied to transport skate the lightweight. Skate properties by varying the design variables and minimize the maximum stress and strain in the normal operation, while reducing the volume of the objective function of optimal design and Skate the static strength of the constraints that should not degrade compared to the performance of the initial model. The skates were used in this study consists of the main frame, sub frame, roll, pin main frame only structural analysis and optimal design was performed using the finite element method. Simplified initial model set design area and it compared to SM45C, AA7075, CFRP, GFRP was using the topology optimization. Strength does not degrade compared to the initial model, decreased volume while minimizing the stress and strain results, the optimum design was achieved efficient lightweight.


1993 ◽  
Vol 115 (3) ◽  
pp. 312-321 ◽  
Author(s):  
Tien-Sheng Chang ◽  
E. B. Magrab

A methodology to attain the highest fundamental natural frequency of a printed wiring board by rearranging its components has been developed. A general two-dimensional rearrangement algorithm is developed by which the rearrangement of the component-lead-board (CLB) assemblies is performed automatically for any combination of equal size, unequal size, movable and immovable CLBs. This algorithm is also capable of incorporating two design restrictions: fixed (immovable) components and prohibited (non-swappable) areas. A highly computationally efficient objective function for the evaluation of the automatic rearrangement process is introduced, which is a linear function of the size of the individual CLBs that have been selected for each interchange. The simulated annealing method is adapted to solve the combinatorial rearrangement of the CLBs. Using 61 combinations of boundary conditions, equal and unequal sized CLBs, movable and immovable CLBs, various CLB groupings and sets of material properties, it is found that, when compared to the exact solution obtained by an exhaustive search method, the simulated annealing method obtained the highest fundamental natural frequency within 1 percent for 87 percent of the cases considered, within 0.5 percent for 72 percent of the cases and the true maximum in 43 percent of them. To further increase the fundamental natural frequency the introduction of a single interior point support is analyzed. Depending on the boundary conditions an additional increase in the maximum fundamental natural frequency of 44 to 198 percent can be obtained.


2016 ◽  
Vol 19 (2) ◽  
pp. 231-258 ◽  
Author(s):  
Mahmood Heshmati ◽  
Bandar Astinchap ◽  
Masoud Heshmati ◽  
Mohammad Hosein Yas ◽  
Yasser Amini

In this paper, a set of numerical and experimental studies are performed to improve mechanical and vibrational properties of carbon nanotubes-reinforced composites. First, at a design concept level, linear distribution patterns of multi-walled carbon nanotubes through the thickness of a typical beam is adopted to investigate its fundamental natural frequency for a given weight percent of multi-walled carbon nanotubes. Both Timoshenko and Euler-Bernoulli beam theories are used in the derivation of the governing equations. The finite element method is employed to obtain a numerical approximation of the motion equation. Next, based on the introduced distribution patterns, laminated multi-walled carbon nanotubes-reinforced polystyrene-amine composite beams are fabricated. Static and experimental modal tests are performed to measure the effective stiffness and fundamental natural frequencies of the fabricated composite beams. Also, in order to generate realistic model to investigate the material properties of fabricated composite beams, the actual tensile specimens of multi-walled carbon nanotubes/polystyrene-amine composites are successfully fabricated and the tensile behaviors of both pure matrix and composites are investigated. To better interfacial bonding between carbon nanotubes and polymer, a chemical treatment is performed on carbon nanotubes. It is seen that the addition of a few wt. % of multi-walled carbon nanotubes make considerable increase in the Young's modulus and the tensile strength of the composite. It is observed from the free vibration tests that the uniform distribution of multi-walled carbon nanotubes results in an increase of 9.5% in the fundamental natural frequency of the polymer cantilever beam, whereas using the symmetric multi-walled carbon nanotube distribution increased its fundamental natural frequency by 17.32%.


1996 ◽  
Vol 118 (2) ◽  
pp. 141-146 ◽  
Author(s):  
S. Abrate

While many advances were made in the analysis of composite structures, it is generally recognized that the design of composite structures must be studied further in order to take full advantage of the mechanical properties of these materials. This study is concerned with maximizing the fundamental natural frequency of triangular, symmetrically laminated composite plates. The natural frequencies and mode shapes of composite plates of general triangular planform are determined using the Rayleigh-Ritz method. The plate constitutive equations are written in terms of stiffness invariants and nondimensional lamination parameters. Point supports are introduced in the formulation using the method of Lagrange multipliers. This formulation allows studying the free vibration of a wide range of triangular composite plates with any support condition along the edges and point supports. The boundary conditions are enforced at a number of points along the boundary. The effects of geometry, material properties and lamination on the natural frequencies of the plate are investigated. With this stiffness invariant formulation, the effects of lamination are described by a finite number of parameters regardless of the number of plies in the laminate. We then determine the lay-up that will maximize the fundamental natural frequency of the plate. It is shown that the optimum design is relatively insensitive to the material properties for the commonly used material systems. Results are presented for several cases.


Sign in / Sign up

Export Citation Format

Share Document