An integrated numerical–experimental study on the optimum utilization of carbon nanotubes in laminated composites

2016 ◽  
Vol 19 (2) ◽  
pp. 231-258 ◽  
Author(s):  
Mahmood Heshmati ◽  
Bandar Astinchap ◽  
Masoud Heshmati ◽  
Mohammad Hosein Yas ◽  
Yasser Amini

In this paper, a set of numerical and experimental studies are performed to improve mechanical and vibrational properties of carbon nanotubes-reinforced composites. First, at a design concept level, linear distribution patterns of multi-walled carbon nanotubes through the thickness of a typical beam is adopted to investigate its fundamental natural frequency for a given weight percent of multi-walled carbon nanotubes. Both Timoshenko and Euler-Bernoulli beam theories are used in the derivation of the governing equations. The finite element method is employed to obtain a numerical approximation of the motion equation. Next, based on the introduced distribution patterns, laminated multi-walled carbon nanotubes-reinforced polystyrene-amine composite beams are fabricated. Static and experimental modal tests are performed to measure the effective stiffness and fundamental natural frequencies of the fabricated composite beams. Also, in order to generate realistic model to investigate the material properties of fabricated composite beams, the actual tensile specimens of multi-walled carbon nanotubes/polystyrene-amine composites are successfully fabricated and the tensile behaviors of both pure matrix and composites are investigated. To better interfacial bonding between carbon nanotubes and polymer, a chemical treatment is performed on carbon nanotubes. It is seen that the addition of a few wt. % of multi-walled carbon nanotubes make considerable increase in the Young's modulus and the tensile strength of the composite. It is observed from the free vibration tests that the uniform distribution of multi-walled carbon nanotubes results in an increase of 9.5% in the fundamental natural frequency of the polymer cantilever beam, whereas using the symmetric multi-walled carbon nanotube distribution increased its fundamental natural frequency by 17.32%.

2007 ◽  
Vol 26-28 ◽  
pp. 831-834 ◽  
Author(s):  
Lei Xie ◽  
Xiao Qi Li

The electrode(Ni-MWNTs) containing nickel(Ni) and multi-walled carbon nanotubes (MWNTs) was prepared by composite electrodeposit. Electrochemical hydrogen storage of the electrode was studied. The result showed a high electrochemical discharging capacity of up to 1361.1mA·h·g-1, which corresponds to a hydrogen storage capacity of 4.77Wt%(weight percent). Test of cyclic lifespan showed MWNTs had certain cyclic lifespan. Cyclic voltammetry tests showed that MWNTs can store hydrogen in chemical form.


2006 ◽  
Vol 51 ◽  
pp. 64-67
Author(s):  
Jing Sun ◽  
Lian Gao

In this paper, a colloidal processing route was adopted to disperse multi-walled carbon nanotubes (MWNTs) into alumina powders homogenously. Alumina matrix composites containing 0.1 to 2 weight percent of MWNTs were successfully fabricated by pressureless sintering. Also, 1wt% MWNTs-alumina composites were prepared by hot pressing for comparison. It was found that when the sample was sintered at 1450oC, the addition of 1wt% carbon nanotubes led to 10% increase in bending strength compared with monolithic alumina. The reinforcement mechanism was discussed based on the microstructure investigation. The broken nanotubes and pullout of MWNTs at interfaces are efficient in transferring the load from the alumina matrix to the nanotubes, leading to the improvement of the mechanical properties.


2016 ◽  
Vol 36 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Hassan Javed ◽  
Mohammad Islam ◽  
Nasir Mahmood ◽  
Amine Achour ◽  
Asad Hameed ◽  
...  

Abstract Mechanical properties of multi-walled carbon nanotubes (CNT) reinforced epoxy nanocomposites, with and without any structural defect, were investigated using different weight percent values of pristine and covalently functionalized CNT. First, nickel ferrite (NiFe2O4) catalyst nanoparticles were prepared using the co-precipitate method followed by CNT growth via chemical vapor deposition, using acetylene as carbon feedstock. Through a combination of magnetic stirring and ultrasound vibration treatments in acetone, pristine, COOH-, or NH2-functionalized CNTs at 0.15, 0.60, 1.10 and 1.50 wt% were added to the Epon 828 epoxy. During each stage, extensive materials characterization was carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA)/differential thermal analysis (DTA) techniques. Tensile testing of the specimens revealed an increase in the elastic modulus and tensile strength values with maximum increase registered in the case of nanocomposites made from 1.1 wt% CNT-NH2 (+73%) or CNT-COOH (67%) addition. The energy absorbed during impact testing also increased by 86% upon addition of 1.50 wt% CNT-NH2. The presence of a small notch in the nanocomposite specimens yielded superior mechanical properties to those of the neat epoxy. Such enhancement in the mechanical properties can be attributed to better CNT dispersion in the nanocomposites and good interfacial bonding, as confirmed from microstructural examination of the fractured surfaces.


Acta Naturae ◽  
2011 ◽  
Vol 3 (1) ◽  
pp. 99-106 ◽  
Author(s):  
E A Smirnova ◽  
A A Gusev ◽  
O N Zaitseva ◽  
E M Lazareva ◽  
G E Onishchenko ◽  
...  

2003 ◽  
Vol 772 ◽  
Author(s):  
T. Seeger ◽  
G. de la Fuente ◽  
W.K. Maser ◽  
A.M. Benito ◽  
A. Righi ◽  
...  

AbstractCarbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.


Sign in / Sign up

Export Citation Format

Share Document