Metagenomics in Deciphering Microbial Communities Associated with Medicinal Plants

Author(s):  
Hira Saleem ◽  
Hareem Mohsin ◽  
Azka Asif ◽  
Rabia Tanvir ◽  
Yasir Rehman
Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 543 ◽  
Author(s):  
Beata Zimowska ◽  
Monika Bielecka ◽  
Barbara Abramczyk ◽  
Rosario Nicoletti

In the aim of implementing new technologies, sustainable solutions and disruptive innovation to sustain biodiversity and reduce environmental pollution, there is a growing interest by researchers all over the world in bioprospecting endophytic microbial communities as an alternative source of bioactive compounds to be used for industrial applications. Medicinal plants represent a considerable source of endophytic fungi of outstanding importance, which highlights the opportunity of identifying and screening endophytes associated with this unique group of plants, widespread in diverse locations and biotopes, in view of assessing their biotechnological potential. As the first contribution of a series of papers dedicated to the Lamiaceae, this article reviews the occurrence and properties of endophytic fungi associated with sages (Salvia spp.).


2021 ◽  
Vol 12 ◽  
Author(s):  
Simon Sauer ◽  
Leon Dlugosch ◽  
Dietmar R. Kammerer ◽  
Florian C. Stintzing ◽  
Meinhard Simon

In the recent past many studies investigated the microbiome of plants including several medicinal plants (MP). Microbial communities of the associated soil, rhizosphere and the above-ground organs were included, but there is still limited information on their seasonal development, and in particular simultaneous investigations of different plant organs are lacking. Many studies predominantly addressed either the prokaryotic or fungal microbiome. A distinction of epi- and endophytic communities of above-ground plant organs has rarely been made. Therefore, we conducted a comprehensive investigation of the bacterial and fungal microbiome of the MP Achillea millefolium and studied the epi- and endophytic microbial communities of leaves, flower buds and flowers between spring and summer together with the microbiome of the associated soil at one location. Further, we assessed the core microbiome of Achillea from four different locations at distances up to 250 km in southern Germany and Switzerland. In addition, the bacterial and fungal epi- and endophytic leaf microbiome of the arborescent shrub Hamamelis virginiana and the associated soil was investigated at one location. The results show a generally decreasing diversity of both microbial communities from soil to flower of Achillea. The diversity of the bacterial and fungal endophytic leaf communities of Achillea increased from April to July, whereas that of the epiphytic leaf communities decreased. In contrast, the diversity of the fungal communities of both leaf compartments and that of epiphytic bacteria of Hamamelis increased over time indicating plant-specific differences in the temporal development of microbial communities. Both MPs exhibited distinct microbial communities with plant-specific but also common taxa. The core taxa of Achillea constituted a lower fraction of the total number of taxa than of the total abundance of taxa. The results of our study provide a basis to link interactions of the microbiome with their host plant in relation to the production of bioactive compounds.


2012 ◽  
Vol 59 ◽  
pp. 106-115 ◽  
Author(s):  
Szymon Zubek ◽  
Anna M. Stefanowicz ◽  
Janusz Błaszkowski ◽  
Maria Niklińska ◽  
Katarzyna Seidler-Łożykowska

2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
A Sapcanin ◽  
A Imamovic ◽  
E Kovac-Besovic ◽  
K Durić ◽  
I Tahirovic ◽  
...  

Pneumologie ◽  
2009 ◽  
Vol 63 (S 01) ◽  
Author(s):  
T Zakharkina ◽  
C Herr ◽  
A Yildirim ◽  
M Friedrich ◽  
R Bals

Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
F Rahman ◽  
S Hossan ◽  
AH Mollik ◽  
R Jahan ◽  
M Rahmatullah

Sign in / Sign up

Export Citation Format

Share Document