Finite Element Investigations on the Fatigue Behaviour and Life Calculation for Axle of Aircraft

Author(s):  
Rishabh Chaudhary ◽  
Srishti Singh
2019 ◽  
Vol 104 ◽  
pp. 205-214 ◽  
Author(s):  
Long Lei ◽  
Xiaozhi Qi ◽  
Shibo Li ◽  
Yuanyuan Yang ◽  
Ying Hu ◽  
...  

2011 ◽  
Vol 278 ◽  
pp. 162-167 ◽  
Author(s):  
Hermann Maderbacher ◽  
H.P. Gänser ◽  
Martin Riedler ◽  
Michael Stoschka ◽  
Martin Stockinger ◽  
...  

Heavy-duty aerospace components are frequently hot forged to satisfy the high requirements concerning their mechanical behaviour. Only the usage of high-performance materials together with a near-optimum manufacturing process enables the production of parts that are at the same time lightweight and mechanically extremely durable. Not only the static properties, but also the fatigue behaviour of Inconel718 is strongly influenced by the material’s microstructure resulting from the forging and heat treatment processes. Therefore, the static and fatigue properties may be controlled via the microstructural properties by suitably adjusting the parameters of the manufacturing processes. The present work links the complete forging and heat treatment process to the local distribution of the material’s fatigue strength within a component; the effect of the operating temperature is also considered. To this purpose, an empirical model is derived from fatigue tests on specimens with different microstructures at different temperatures. The resulting fatigue strength model is implemented, along with a microstructural evolution model from earlier work [1], into a finite element code in order to predict the local fatigue strength distribution in a component after being subjected to an arbitrary forging process. In a further step, the finite element code is linked to an optimization tool for determining the optimum set of manufacturing process parameters such that the component lifetime is maximized while taking process constraints into consideration.


2019 ◽  
Vol 827 ◽  
pp. 288-293 ◽  
Author(s):  
Saverio Giulio Barbieri ◽  
V. Mangeruga ◽  
Matteo Giacopini ◽  
Carlo Laurino ◽  
Mariano Lorenzini

In this paper a numerical methodology is proposed, which aims at predicting the fatigue behaviour of engine cylinder liners in an eight-cylinder V-type four-stroke turbocharged engine. A preliminary kinematic and dynamic study of the crank mechanism is fulfilled in order to properly identify the load cycle that involves the cylinder liner. Finite Element analyses, both thermal and thermo-mechanical, are performed to evaluate the stress and the strain of the component. In particular, non-linear models are developed to mimic the piston-liner interaction when subjected to different loading conditions. A simplified approach is proposed in order to reduce the computational effort of the simulations. FEM results are then processed employing the multiaxial Dang Van fatigue criterion.


Author(s):  
Patricia Pappa ◽  
George E. Varelis ◽  
Spyros A. Karamanos ◽  
Arnold M. Gresnigt

In this paper the low cycle fatigue behaviour of steel elbows under strong cyclic loading conditions (in-plane and out-of-plane) is examined. The investigation is conducted through advanced finite element analysis tools, supported by real-scale test data for in-plane bending. The numerical results are successfully compared with the experimental measurements. In addition, a parametric study is conducted, which is aimed at investigating the effects of the diameter-to-thickness ratio on the low-cycle fatigue of elbows, focusing on the stress and strain variations. Strain gauge measurements are compared with finite element models. Upon calculation of local strain variation at the critical location, the number of cycles to fracture can be estimated.


Author(s):  
Chitrance Kumar Srivastav ◽  
Rajat Kapoor ◽  
Debashis Khan

Author(s):  
Farnoosh Farhad ◽  
Xiang Zhang ◽  
David Smyth-Boyle

Corrosion pits are a form of geometrical discontinuity that lead to stress and strain concentration in engineering components, resulting in crack initiation under service loading conditions and ultimately fracture and failure. Initiation and propagation of cracks in offshore pipelines can lead to loss of containment and environmental and commercial impacts. In order to prevent such failures, tools to predict the structural integrity of pipelines need to be improved. This work investigates the fatigue behaviour of corrosion pits in API-5L X65 grade steel pipeline utilising numerical and analytical methods. Firstly, load-controlled fatigue tests were carried out on smooth X65 steel samples to establish S–N data. Secondly, local stress–strain behaviour at corrosion pits and its effect on fatigue crack initiation were investigated using elastic-plastic finite element analysis of samples containing a single corrosion pit under cyclic loading. Analysis of stabilised stress–strain hysteresis loops at corrosion pits showed that the local stress ratio at the pit changes from 0.1 to −0.4 while the applied stress amplitude increases with the same stress ratio of 0.1. Analytical methods were also used to predict the local maximum stress and strain at the pit, which showed a similar local stress ratio to the finite element analysis result but lower stress and strain ranges. Finally, fatigue crack initiation life was predicted using the combination of finite element stress and strain analysis and the Smith–Watson–Topper strain–life approach. An advantage of this method for life estimation is that this approach considers the local stress and strains at corrosion pits rather than applied stress.


Sign in / Sign up

Export Citation Format

Share Document