A Finite Element Numerical Methodology for the Fatigue Analysis of Cylinder Liners of a High Performance Internal Combustion Engine

2019 ◽  
Vol 827 ◽  
pp. 288-293 ◽  
Author(s):  
Saverio Giulio Barbieri ◽  
V. Mangeruga ◽  
Matteo Giacopini ◽  
Carlo Laurino ◽  
Mariano Lorenzini

In this paper a numerical methodology is proposed, which aims at predicting the fatigue behaviour of engine cylinder liners in an eight-cylinder V-type four-stroke turbocharged engine. A preliminary kinematic and dynamic study of the crank mechanism is fulfilled in order to properly identify the load cycle that involves the cylinder liner. Finite Element analyses, both thermal and thermo-mechanical, are performed to evaluate the stress and the strain of the component. In particular, non-linear models are developed to mimic the piston-liner interaction when subjected to different loading conditions. A simplified approach is proposed in order to reduce the computational effort of the simulations. FEM results are then processed employing the multiaxial Dang Van fatigue criterion.

2012 ◽  
Vol 533 ◽  
pp. 91-97 ◽  
Author(s):  
Andrei Manzat ◽  
A. Killinger ◽  
R. Gadow

Rising demands for ecologically friendly automotive engines require a significant decrease in fuel consumption and emissions. Also the recent trend of downsizing engines demands for high performance materials for internal combustion engine applications. Tribologically functional coatings applied by supersonic flame spraying help in boosting the engine efficiency by reducing the internal friction and improving the durability and wear resistance of the cylinder running surface much-needed for engine downsizing tasks together with a high corrosion resistance enabling the use of bio fuels. In addition, the tailored surface topography of the thermal spray coatings help in supporting advantageous friction states and thereby show the benefit of reducing the oil consumption resulting in reduced emissions. The thermally sprayed coatings were applied using HVOF and HVSFS processes together with a specially designed spray gun trajectory in order to achieve a fast and cost efficient coating procedure. Several different coating materials, including novel nanostructured powders, have been investigated and compared to state-of-the-art cylinder liners. The performance of the coated cylinder liners regarding wear and corrosion resistance, friction coefficient and effects of the surface topography have been investigated in various test setups including engine tests.


2015 ◽  
Vol 1092-1093 ◽  
pp. 483-486
Author(s):  
Yan Hui Zhao ◽  
Sheng Hui Peng ◽  
Hong Li

In recent years, the computer software and technology and the rapid development of finite element theory promote the internal combustion engine dynamic analysis process, greatly improving the application of the internal combustion engine complex parts of the finite element analysis of the efficiency of the precision and reliability of.CAE technology in engine design in the field of eventually allow designers to design modern engine with high performance, low emission, low fuel consumption and low noise, light weight and miniaturization.


2021 ◽  
pp. 2141008
Author(s):  
Hao Gao ◽  
Kun-Chieh Wang ◽  
Long Wu ◽  
Guangdong Gao ◽  
Dong Liu ◽  
...  

The cylinder liner is a key part of an internal combustion engine. It always exposes at the worst conditions in the engine room: high temperatures, high pressures, large frictions, and large applying forces. Therefore, excellent physical properties such as surface hardness, tensile strength, heat resistance, and pressure resistance are essentially required as a cylinder liner material. Among them, the surface hardness and tensile strength are the most important properties which play decisive roles in producing a good cylinder liner. Researches on the development of new cast materials with different contents of alloying elements used in cylinder liners, which may exhibit high surface hardness as well as tensile strength, consistently draw much attention. In this regard, this study aims to experimentally investigate the effects of alloy compositions on the mechanical properties of ASBC materials for cylinder liners. Besides, we also replace the traditional-used high-price Ni with low-price Cu in order to reduce the production cost of cylinder liner materials. Results show that the best contents of C, Mo, and Cu for an as-cast banite iron (ACBI) material are found around 2.7%, 0.6–0.8%, and 0.82–1.0%, respectively, in which the highest hardness occurs. Those are found around 2.7%, 0.7–0.8%, and 0.94–1.0%, respectively, in which the highest tensile strength occurs. At the same time, without any reductions in performances of hardness and tensile strength, we successfully adopt Cu as a substitute for Ni as an important composition of ACBI material for cylinder liners.


Author(s):  
S Balakrishnan ◽  
S Howell-Smith ◽  
H Rahnejat

The article presents detailed analysis of the conforming contact between a piston and cylinder liner in a high-speed racing engine under extreme operating conditions owing to high loads and operating speeds in excess of 19 000 r/min, resulting in a high sliding velocity of 42 m/s. The analysis indicates contact forces generated in the order of 2.5 kN. The contribution due to fluid film lubrication is found to reside in iso-viscous rigid or elastic regimes of lubrication, which is insufficient to form a coherent lubricant film during some parts of the cycle, such as at top-dead-centre (TDC). The article shows that at combustion, 95 per cent of the contact can remain in boundary or mixed regimes of lubrication. Piston skirt surface modification features are used in conjunction with an electrolytically applied composite coating, Ni[SiC]p to produce advanced cylinder liners to remedy the situation. Detailed numerical analysis shows that significant improvement is achieved in the regime of lubrication condition.


Author(s):  
M Gore ◽  
R Rahmani ◽  
H Rahnejat ◽  
PD King

The paper presents direct measurement of in-cylinder friction from a single cylinder motocross race engine under motored conditions and compares the same with a new analytical predictive method. These conditions are encountered in piston–cylinder system with the application of cylinder deactivation (CDA) technology, which is a growing trend. The analytical method takes into account the various regions within instantaneous contact of compression ring–cylinder liner, including lubricant film rupture, cavitation zone and the subsequent lubricant film reformation. The analysis also includes the effect of boundary friction and lubricant rheology. The predictions and direct measurements of cyclic friction show good agreement and indicate dominance of viscous friction under the investigated engine running conditions. In particular, it is shown that the compression ring contribution to in-cycle friction is most pronounced in the region of high cylinder pressures because of combined Poiseuille friction and some boundary solid interactions. The combined experimental-analytical approach has not hitherto been reported in literature.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2715
Author(s):  
Ruth Yadira Vidana Morales ◽  
Susana Ortega Cisneros ◽  
Jose Rodrigo Camacho Perez ◽  
Federico Sandoval Ibarra ◽  
Ricardo Casas Carrillo

This work illustrates the analysis of Film Bulk Acoustic Resonators (FBAR) using 3D Finite Element (FEM) simulations with the software OnScale in order to predict and improve resonator performance and quality before manufacturing. This kind of analysis minimizes manufacturing cycles by reducing design time with 3D simulations running on High-Performance Computing (HPC) cloud services. It also enables the identification of manufacturing effects on device performance. The simulation results are compared and validated with a manufactured FBAR device, previously reported, to further highlight the usefulness and advantages of the 3D simulations-based design process. In the 3D simulation results, some analysis challenges, like boundary condition definitions, mesh tuning, loss source tracing, and device quality estimations, were studied. Hence, it is possible to highlight that modern FEM solvers, like OnScale enable unprecedented FBAR analysis and design optimization.


1999 ◽  
Vol 123 (1) ◽  
pp. 33-42 ◽  
Author(s):  
A. Saxena ◽  
G. K. Ananthasuresh

Optimal design methods that use continuum mechanics models are capable of generating suitable topology, shape, and dimensions of compliant mechanisms for desired specifications. Synthesis procedures that use linear elastic finite element models are not quantitatively accurate for large displacement situations. Also, design specifications involving nonlinear force-deflection characteristics and generation of a curved path for the output port cannot be realized with linear models. In this paper, the synthesis of compliant mechanisms is performed using geometrically nonlinear finite element models that appropriately account for large displacements. Frame elements are chosen because of ease of implementation of the general approach and their ability to capture bending deformations. A method for nonlinear design sensitivity analysis is described. Examples are included to illustrate the usefulness of the synthesis method.


2013 ◽  
Vol 718-720 ◽  
pp. 1645-1650
Author(s):  
Gen Yin Cheng ◽  
Sheng Chen Yu ◽  
Zhi Yong Wei ◽  
Shao Jie Chen ◽  
You Cheng

Commonly used commercial simulation software SYSNOISE and ANSYS is run on a single machine (can not directly run on parallel machine) when use the finite element and boundary element to simulate muffler effect, and it will take more than ten days, sometimes even twenty days to work out an exact solution as the large amount of numerical simulation. Use a high performance parallel machine which was built by 32 commercial computers and transform the finite element and boundary element simulation software into a program that can running under the MPI (message passing interface) parallel environment in order to reduce the cost of numerical simulation. The relevant data worked out from the simulation experiment demonstrate that the result effect of the numerical simulation is well. And the computing speed of the high performance parallel machine is 25 ~ 30 times a microcomputer.


2013 ◽  
Vol 671-674 ◽  
pp. 1025-1028
Author(s):  
Dong Ku Shin ◽  
Kyungsik Kim

The ultimate compressive strengths of high performance steel (HPS) plate system stiffened longitudinally by closed stiffeners have been investigated by the nonlinear finite element analysis. Both conventional and high performance steels were considered in models following multi-linear strain hardening constitutive relationships. Initial geometric imperfections and residual stresses were also incorporated in the analysis. Numerical results have been compared to compressive strengths from Eurocode 3 EN 1993-1-5 and FHWA-TS-80-205. It has been found that although use of Eurocode 3 EN 1993-1-5 and FHWA-TS-80-205 may lead to highly conservative design strengths when very large column slenderness parameters are encountered


2011 ◽  
Vol 03 (01n02) ◽  
pp. 39-47 ◽  
Author(s):  
R. NEUGEBAUER ◽  
R. WERTHEIM ◽  
U. SEMMLER

On cutting tools for high performance cutting (HPC) processes or for hard-to-cut materials, there is an increased importance in so-called superlattice coatings with hundreds of layers each of which is only a few nanometers in thickness. Homogeneity or average material properties based on the properties of single layers are not valid in these dimensions any more. Consequently, continuum mechanical material models cannot be used for modeling the behavior of nanolayers. Therefore, the interaction potentials between the single atoms should be considered. A new, so-called atomic finite element method (AFEM) is presented. In the AFEM the interatomic bonds are modeled as nonlinear spring elements. The AFEM is the connection between the molecular dynamics (MD) method and the crystal plasticity FEM (CPFEM). The MD simulates the atomic deposition process. The CPFEM considers the behavior of anisotropic crystals using the continuum mechanical FEM. On one side, the atomic structure data simulated by MD defines the interface to AFEM. On the other side, the boundary conditions (displacements and tractions) of the AFEM model are interpolated from the CPFEM simulations. In AFEM, the lattice deformation, the crack and dislocation behavior can be simulated and calculated at the nanometer scale.


Sign in / Sign up

Export Citation Format

Share Document