Low Cycle Fatigue Tests and Simulations on Steel Elbows

Author(s):  
Patricia Pappa ◽  
George E. Varelis ◽  
Spyros A. Karamanos ◽  
Arnold M. Gresnigt

In this paper the low cycle fatigue behaviour of steel elbows under strong cyclic loading conditions (in-plane and out-of-plane) is examined. The investigation is conducted through advanced finite element analysis tools, supported by real-scale test data for in-plane bending. The numerical results are successfully compared with the experimental measurements. In addition, a parametric study is conducted, which is aimed at investigating the effects of the diameter-to-thickness ratio on the low-cycle fatigue of elbows, focusing on the stress and strain variations. Strain gauge measurements are compared with finite element models. Upon calculation of local strain variation at the critical location, the number of cycles to fracture can be estimated.

2011 ◽  
Vol 291-294 ◽  
pp. 1106-1109 ◽  
Author(s):  
Grzegorz Golański ◽  
Krzysztof Werner ◽  
Stanisław Mroziński

The report treats of the low cycle fatigue (LCF) behaviour of GX12CrMoVNbN9-1 (GP91) cast steel after heat treatment (1040°C/12h/oil + 760°C/12h/air + 750°C/8h/furnace). Fatigue tests were carried out at room temperature for five levels of the controlled total strain amplitude εac = 0.25, 0.30, 0.35, 0.50 and 0.60 %. The research performed within the scope of LCF has shown in general that the investigated cast steel was subject to strong cyclic weakening, revealing no stabilization period at the same time. At the final stage of fatigue there was quick weakening of the material which proceeded till its destruction. The growth of amplitude εac resulted in reducing the number of cycles till the destruction stage.


2006 ◽  
Vol 326-328 ◽  
pp. 1011-1014 ◽  
Author(s):  
Ill Seok Jeong ◽  
Sang Jai Kim ◽  
Taek Ho Song ◽  
Sung Yull Hong

For developing fatigue design curve of cast stainless steel that is used in piping material of nuclear power plants, a low-cycle fatigue test rig was built. It is capable of performing tests in pressurized high temperature water environment of PWR. Cylindrical solid fatigue specimens of CF8M were used for the strain-controlled environmental fatigue tests. Fatigue life was measured in terms of the number of cycles with the variation of strain amplitude at 0.04%/s strain rates. The disparity between target length and measured length of specimens was corrected by using finite element method. The corrected test results showed similar fatigue life trend with other previous results.


2005 ◽  
Vol 475-479 ◽  
pp. 3505-3508
Author(s):  
Tamaz Eterashvili ◽  
T. Dzigrashvili ◽  
M. Vardosanidze

The structure of austenitic steel before and after 25% of total number of cycles of low cycle fatigue tests conducted at room temperature is studied using TEM. It is shown that the cyclic deformation of the steel proceeds heterogeneously. The microstructure of the steel is investigated in the area between the deformed and undistorted parts of the samples. The crystallography of the observed twins and the slip bands is specified. The value of local plastic deformation within a micro area of a grain is measured, and the influence of microstructure on crack initiation is discussed.


1995 ◽  
Vol 11 (02) ◽  
pp. 71-80
Author(s):  
Rahul S. Shah ◽  
Kuo-Chiang Wang ◽  
Mary Jane Kleinosky

Finite-element and analytical models are used in this study to predict the low-cycle fatigue life of undermatched (lower yield strength) weldments of HY-100 steel. The objective was to determine the feasibility of replacing conventional overmatched welds in marine structures. Fatigue tests were performed on standard, smooth specimens, notched cylindrical specimens and a four-point-bend test on a full-scale butt beam specimen. Numerical analyses were conducted using finite elements, with a two-surface plasticity algorithm to simulate the cyclic behavior of the individual materials. The stress and strain concentrations at the notches were also evaluated using two analytical models: the Neuber and Glinka relations. The finite-element predictions compared well with experimental data and produced detailed predictions of the strain distributions, which were then used to assess the crack initiation life. Glinka's relation demonstrated superior predictive capabilities for local strains over Neuber's relation.


2021 ◽  
Author(s):  
Aditya Dubey ◽  
Rishi Relan ◽  
Uwe Lohse ◽  
Jaroslaw Szwedowicz

Abstract The secondary stresses that result from nonlinear and transient thermal gradients during the start-up and shut down of the large gas turbine engines drive low-cycle fatigue at specific locations of the outer casing. Typical service inspection of the outer casing is primarily based on finite element analysis estimates, considering various safety factors. However, as finite element analysis includes the worst possible combination of loading scenarios and operating conditions any engine may encounter in actual operation, this results in a conservative estimation of the service interval. Therefore, a generic preventive maintenance plan for the whole fleet often underutilises the casing capability and added cost. Hence, this paper proposes a data-driven nonlinear dynamic reduced-order model developed using the temperature data from low-cycle fatigue critical casing locations, ramp rates, and the percentage load of operation to predict the stresses. As a result, a reduced-order model can assess the damage for low-cycle fatigue critical locations in real-time using the operational data and propose an appropriate service intervention plan for each casing in a fleet.


Author(s):  
Anil Saigal ◽  
Luke Jensen ◽  
Thomas James

Finite element analysis is used extensively in the aircraft turbine engine industry to predict stresses to calculate low cycle fatigue (LCF) life of life-limited parts (LLP’s). A failure of an LLP can lead to a potentially catastrophic event such as a noncontainment of high energy debris. Under-predicted stress can cause the life limits to be set too high, which is a safety hazard. Over-predicted stress can cause the life limits to be set too low, which adds cost due to the need to replace expensive engine hardware more frequently. As such, high fidelity stress analysis is necessary to appropriately set LCF life limits. This study focuses on the nut-bolt interface modeling assumptions associated with a rotor bolted joint stress analysis for LCF predictions. A 3D finite element model of an actual aircraft engine rotor bolted joint is created. Different cases are analyzed and compared to investigate how the thread modeling assumptions might affect the calculated life in the mated rotor LLP hardware. Walker-adjusted alternating stress, σ0,alt, is used to measure the affect on life impact. It is shown that elastic versus elastic-plastic nut/bolt materials properties and the inclusion of the helical thread shape have minor impact on the calculated stresses. However, inclusion of contact elements with friction at the thread interface instead of couples has a moderate impact on the calculated stresses and therefore expected life.


2015 ◽  
Vol 31 (1) ◽  
pp. 247-272 ◽  
Author(s):  
Chung-Che Chou ◽  
Ying-Chuan Chen

This work presents mechanics, tests, and finite element analyses of a novel steel dual-core self-centering brace (SCB) with flag-shaped re-centering responses. The axial deformation capacity of the brace is doubled with respect to the SCED brace by serial deformations of two sets of parallel tensioning elements when both braces use the same tensioning elements. The mechanics of the brace is first explained; six tensioning elements and four dual-core SCBs are tested to evaluate their cyclic performance. The braces exhibit excellent performance up to a drift of 2% with a maximum axial force around 1,400 kN. The braces also survive 15 low-cycle fatigue tests at a drift of 1.5%. Tensioning elements fail when the braces are overloaded to 2.5–3% drift. Finite element analysis is conducted to further verify hysteretic responses of the dual-core SCB in cyclic tests. A design procedure for the proposed dual-core SCB is also included in the paper.


2007 ◽  
Vol 348-349 ◽  
pp. 385-388 ◽  
Author(s):  
Tamaz Eterashvili ◽  
T. Dzigrashvili ◽  
M. Vardosanidze

This study deals with the SEM and optical microscopic characterization of fatigue plastic deformation process during fatigue crack initiation to understand where, why and how cracks initiate under conditions of low cycle fatigue. Samples were prepared from the 13Х11Н2В2МФ high-chromium stainless steel used for fusion power applications. The low-cycle tests were conducted at room temperature with the standard V-notched samples prepared from conventional stainless steel. The following characteristics were studied during fatigue tests: 1 macrocrack propagation, 2. interaction between macrocrack and isolated microcracks, 3. interaction between macrocrack and slip bands, 4. interaction between macrocrack and microstructure elements of the steel. The above experiments show that during macrocrack propagation a plastic zone is formed around it, where isolated microcracks and slip bands of 2-3 different directions are observed. Measurement of plastic zone dimensions after different number of cycles of deformation show that plastic zone size increases during the first stage of cyclic deformation (until definite number of cycles are completed), and then remains unchanged. The observations show that main crack is composed of individual micro-components, the lengths of which are in a good correlation with the dimensions of microstructure elements of the steel (former austenite grains, martensite crystals). It was revealed that during growth, as a rule, macrocrack rarely propagates along isolated microcracks and slip bands. Direction of macrocrack propagation changes while passing from one microstructure element to another, so that main direction is the same. No preferable transcrystalline or intercrystalline propagation of macrocrack has been observed in the investigated steel. It is shown that after subsequent fatigue tests, dimensions of the previously created slip bands increase, and additional new slip band are also formed. The sites and frequency of slip bands’ formation in plastic zone are also studied. It was observed that the boundaries and mainly the sites of intersection of martensite crystals are the sites of isolated (rough) microcracks’ formation. The dimensions of slip bands are comparable with those of martensite crystals. The angles between the main crack propagation direction and slip bands varied from 30o to 60o, however, most of the slip bands were oriented at 45o to the main crack. Based on the obtained results a conclusion is made that plastic deformation in samples go inhomogeneously. In plastic zones, along with the heavily deformed areas, almost non-deformed areas are also observed. The speed of fatigue fracture increases with the increase in frequency and amplitude of deformations. Generally, the annealed samples are destructed prematurely in comparison with non-annealed ones of the investigated steel.


2011 ◽  
Vol 66-68 ◽  
pp. 1380-1383
Author(s):  
Zhi Min Lu ◽  
Lin Lin Wang ◽  
Wei Feng Chen ◽  
Lin Zhang

The study of Low-Cycle fatigue showed that strain is more important parameter than stress for describing fatigue property of materials .Exactly obtaining regional strain of the structure by analysis is key in fatigue design of complex structure .Therefore, the analysis and solution by finite element is very necessary. The maximum elastic and plastic strain at the nozzle junction of a pressure vessel under several loadings are calculated by using ANSYS software .Then crack forming life is calculated by using the N.E.Dowling formula .


Sign in / Sign up

Export Citation Format

Share Document