Backstepping Method and Control Allocation for a Fully-Actuated Tri-Rotor

2021 ◽  
pp. 1857-1871
Author(s):  
Yunhe Wang ◽  
Zhangzhen Zhu ◽  
Yu Zhang
ICCAS 2010 ◽  
2010 ◽  
Author(s):  
Van Phuoc Bui ◽  
Jeong Soon Jeong ◽  
Dong Seok Lee ◽  
Young Bok Kim ◽  
Kwon Soon Lee

Aerospace ◽  
2020 ◽  
Vol 7 (10) ◽  
pp. 150
Author(s):  
Thomas R. Shearwood ◽  
Mostafa R. A. Nabawy ◽  
William J. Crowther ◽  
Clyde Warsop

Tailless aircraft without vertical stabilisers typically use drag effectors in the form of spoilers or split flaps to generate control moments in yaw. This paper introduces a novel control allocation method by which full three-axis control authority can be achieved by the use of conventional lift effectors only, which reduces system complexity and control deflection required to achieve a given yawing moment. The proposed method is based on synthesis of control allocation modes that generate asymmetric profile and lift induced drag whilst maintaining the lift, pitching moment and rolling moment at the trim state. The method uses low order models for aerodynamic behaviour characterisation based on thin aerofoil theory, lifting surface methodology and ESDU datasheets and is applied to trapezoidal wings of varying sweep and taper. Control allocation modes are derived using the zero-sets of surrogate models for the characterised aerodynamic behaviours. Results are presented in the form of control allocations for a range of trimmed sideslip angles up to 10 degrees optimised for either maximum aerodynamic efficiency (minimum drag for a specific yawing moment) or minimum aggregate control deflection (as a surrogate observability metric). Outcomes for the two optimisation objectives are correlated in that minimum deflection solutions are always consistent with efficient ones. A configuration with conventional drag effector is used as a reference baseline. It is shown that, through appropriate allocation of lift based control effectors, a given yawing moment can be produced with up to a factor of eight less aggregate control deflection and up to 30% less overall drag compared to use of a conventional drag effector.


2011 ◽  
Author(s):  
Tristan Perez ◽  
Alejandro Donaire ◽  
Pierre De Lamberterie ◽  
Brendan Williams

2014 ◽  
Vol 496-500 ◽  
pp. 1401-1406
Author(s):  
Mei Hong Li ◽  
Jian Yin ◽  
Xue Yang Sun ◽  
Jin Xiang Xu ◽  
Mei Mei Zhang

Missile control system is not block strict feedback system which is suitable to use backstepping method. So in this paper, a backstepping control method is proposed to design a missile longitudinal autopilot and is proved to be asymptotically stable by Lyapunov stability theory. The simulation results show that the designed system can still track commands quickly and accurately and is robust with aerodynamic perturbation and control input saturation.


2001 ◽  
Vol 24 (3) ◽  
pp. 482-493 ◽  
Author(s):  
John J. Burken ◽  
Ping Lu ◽  
Zhenglu Wu ◽  
Cathy Bahm

Sign in / Sign up

Export Citation Format

Share Document