Design of Missile Longitudinal Control System Based on Backstepping Control

2014 ◽  
Vol 496-500 ◽  
pp. 1401-1406
Author(s):  
Mei Hong Li ◽  
Jian Yin ◽  
Xue Yang Sun ◽  
Jin Xiang Xu ◽  
Mei Mei Zhang

Missile control system is not block strict feedback system which is suitable to use backstepping method. So in this paper, a backstepping control method is proposed to design a missile longitudinal autopilot and is proved to be asymptotically stable by Lyapunov stability theory. The simulation results show that the designed system can still track commands quickly and accurately and is robust with aerodynamic perturbation and control input saturation.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Shengjiang Yang ◽  
Jianguo Guo ◽  
Jun Zhou

A new integrated guidance and control (IGC) law is investigated for a homing missile with an impact angle against a ground target. Firstly, a control-oriented model with impact angle error of the IGC system in the pitch plane is formulated by linear coordinate transformation according to the motion kinematics and missile dynamics model. Secondly, an IGC law is proposed to satisfy the impact angle constraint and to improve the rapidity of the guidance and control system by combining the sliding mode control method and nonlinear extended disturbance observer technique. Thirdly, stability of the closed-loop guidance and control system is proven based on the Lyapunov stability theory, and the relationship between the accuracy of the impact angle and the estimate errors of nonlinear disturbances is derived from stability of the sliding mode. Finally, simulation results confirm that the proposed IGC law can improve the performance of the missile guidance and control system against a ground target.


2010 ◽  
Vol 136 ◽  
pp. 153-157
Author(s):  
Yu Hong Du ◽  
Xiu Ming Jiang ◽  
Xiu Ren Li

To solve the problem of detecting the permeability of the textile machinery, a dedicated test system has been developed based on the pressure difference measuring method. The established system has a number of advantages including simple, fast and accurate. The mathematical model of influencing factors for permeability is derived based on fluid theory, and the relationship of these parameters is achieved. Further investigations are directed towards the inherent characteristics of the control system. Based on the established model and measuring features, an information fusion based clustering control system is proposed to implement the measurement. Using this mechanical structure, a PID control system and a cluster control system have been developed. Simulation and experimental tests are carried out to examine the performance of the established system. It is noted that the clustering method has a high dynamic performance and control accuracy. This cluster fusion control method has been successfully utilized in powder metallurgy collar permeability testing.


Author(s):  
Fei Ma ◽  
Yunjie Wu ◽  
Siqi Wang ◽  
Xiaofei Yang ◽  
Yueyang Hua

This paper presents an adaptive fixed-time guidance law for the three-dimensional interception guidance problem with impact angle constraints and control input saturation against a maneuvering target. First, a coupled guidance model formulated by the relative motion equation is established. On this basis, a fixed-time disturbance observer is employed to estimate the lumped disturbances. With the help of this estimation technique, the adaptive fixed-time sliding mode guidance law is designed to accomplish accurate interception. The stability of the closed-loop guidance system is proven by the Lyapunov method. Simulation results of different scenarios are executed to validate the effectiveness and superiority of the proposed guidance law.


2020 ◽  
Vol 53 (7-8) ◽  
pp. 1364-1375
Author(s):  
Feng Cao ◽  
Yongming Li

This work solves the stability problem of a vehicle suspension with stochastic disturbance by designing an adaptive controller. The model of a quarter vehicle subjected to noise excitation is considered. The stochastic perturbance is realized by the roughness of the road and the vehicle moving with constant velocity. In the control design procedure, fuzzy logic systems are used to approximate unknown nonlinear functions. Meanwhile, the mean value theorem is employed to ensure the existence of the affine virtual control variables and control input. The backstepping technique is applied to construct the ideal controller. On the basis of Lyapunov stability theory, the proposed control method proves that the displacement and speed of the vehicle is reduced to a level ascertained by a true “desired” conceptual suspension reference model. Finally, the effectiveness of the proposed method is verified by simulation of electromagnetic actuator servo system.


Author(s):  
Guanjie Hu ◽  
Jianguo Guo ◽  
Jun Zhou

An integrated guidance and control method is investigated for interceptors with impact angle constraint against a high-speed maneuvering target. Firstly, a new control-oriented model with impact angle constraint of the integrated guidance and control system is built in the pitch plane by combining the engagement kinematics and missile dynamics model between the interceptor and target. Secondly, the flight path angle of the target is estimated by extended Kalman filter in order to transform the terminal impact angle constraint into the terminal line-of-sight angle constraint. Thirdly, a nonlinear adaptive sliding mode control law of the integrated guidance and control system is designed in order to directly obtain the rudder deflection command, which eliminates time delay caused by the traditional backstepping control method. Then the Lyapunov stability theory is used to prove the stability of the whole closed-loop integrated guidance and control system. Finally, the simulation results confirm that the integrated guidance and control method proposed in this paper can effectively improve the interception performance of the interceptor to a high-speed maneuvering target.


2013 ◽  
Vol 347-350 ◽  
pp. 768-771 ◽  
Author(s):  
Jian Jun Zhou ◽  
Xiao Fang Wang ◽  
Xiu Wang ◽  
Wei Zou ◽  
Ji Chen Cai

A greenhouse monitoring and control system based on Zigbee networks was developed. This system consists of greenhouse data acquisition controller and greenhouse remote monitoring and control software. The system could monitor temperature and humidity, soil water content and concentration of carbon dioxide in greenhouse and could save these greenhouse data to database. Greenhouse acquisition controller had two kinds of control modes, including local manual control mode and remote wireless control mode in monitoring center. Greenhouse remote monitoring and control software can collect, display and record the collected data, also can control greenhouse environment. According to the current indoor temperature, the target temperature and the offset temperature, PID control method is used for temperature control in greenhouse. The system is implemented using low power wireless components, and easy to be installed. A good wireless solution is provided by this system for centralized management of the greenhouse group.


Author(s):  
Takuya Nomoto ◽  
Daisuke Hunakoshi ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper presents a new modeling method and a control system design procedure for a flexible rotor with many elastic modes using active magnetic bearings. The purpose of our research is to let the rotor rotate passing over the 1st and the 2nd critical speeds caused by flexible modes. To achieve this, it is necessary to control motion and vibration of the flexible rotor simultaneously. The new modeling method named as Extended Reduced Order Physical Model is presented to express its motion and vibration uniformly. By using transfer function of flexible rotor-Active Magnetic Bearings system, we designed a Local Jerk Feedback Control system and conducted stability discrimination with root locus. In order to evaluate this modeling and control method, levitation experimentation is conducted.


Sign in / Sign up

Export Citation Format

Share Document