Investigation of Optimum Process Parameter on CNC Turning for Aluminium Alloy AA6262 Using Grey Relational Analysis

Author(s):  
Rahul Sharma ◽  
Kamal Sharma ◽  
Devendra Singh ◽  
Kuwar Mausam ◽  
Ravindra Pratap Singh
Author(s):  
P. Lakshmikanthan ◽  
B. Prabu

This study investigates the optimization of CNC turning operation parameters for Al6061 nickel coated graphite (NCG) metal matrix composite using the Taguchi based grey relational analysis method. The turning operations are carried out with carbide cutting tool inserts. According to the Taguchi quality concept, 3-level orthogonal array was chosen for the experiments. The experiments are conducted at three different cutting speeds (125, 175, 225m/min) with feed rates (0.1, 0.15, 0.2mm/rev) and depth of cut (0.5, 1, 1.5mm) and different % of reinforcement (2.5%, 5%, 7.5%), signal to noise ratio and the analysis of variance are used to optimize cutting parameters. The effects of cutting speed, feed rate and depth of cut on surface roughness and MRR are analyzed. Mathematical models are developed by using the response surface method to formulate the cutting parameters experimental results shown that machining performance can be improved effectively by using this approach, the analysis of variance (ANOVA) is applied to identify the most significant factor for the turning operations according to the weighted sum grade of the GRG. The predict responses shows the models have more than 95% of confident level of R2 value, from the obtained confirmation experiment result, it is observed, there is a good agreement between the estimated value and the experimental value of the grey relational grade. This experimental study reveals that the grey-Taguchi and RSM can be applied successfully for multi response characteristic performances.


2020 ◽  
Vol 44 (4) ◽  
pp. 592-601
Author(s):  
S.R. Sundara Bharathi ◽  
D. Ravindran ◽  
A. Arul Marcel Moshi

Extensive research has been carried out to optimize the process parameters of several machining processes. Optimizing the influencing parameters of the turning operation is a precise action that determines the desired level of quality. This study focuses on the multi-criteria optimization of the CNC turning process parameters of stainless steel 303 (SS 303) material to achieve minimum surface roughness (Ra) with maximum material removal rate (MRR) by means of Taguchi-based grey relational analysis. A CNC machine was tested following Taguchi’s L9 orthogonal array design. Grey relational analysis was used as the multi-criteria optimization tool. The significance of each individual process parameter on the overall characteristics of the turned specimen was estimated using analysis of variance (ANOVA). Regression equations were generated using the input factors with the selected output parameters. In addition, a morphological study of the chips produced by the turning process was carried out using SEM images in order to relate the chip geometry with the output responses.


Sign in / Sign up

Export Citation Format

Share Document