Comparative Study of the Performance of Double-Pass and Single-Pass Solar Air Heater with Thermal Storage

Author(s):  
Vipin Shrivastava ◽  
Anil Yadav ◽  
Nitin Shrivastava
2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Raheleh Nowzari ◽  
Hasan Saygin ◽  
L.B.Y. Aldabbagh

Abstract An experimental study was conducted to evaluate the thermal efficiency of a modified solar air heater. In the current design, air enters the collector through holes in front glass, passes through mesh layers, and exits at the backside of the air heater. A centrifugal fan was used to circulate air through the system. The design offers low construction costs and less solar radiation reflected from the collector. The modified collector was examined with various bed heights (30, 50, and 70 mm) and different mass flowrates of air varying from 0.011 kg/(s m2) to 0.043 kg/(s m2). The results showed that a counter flow collector with pierced cover had 5.6–9.7% higher efficiency than the single-pass one. The average efficiencies of the current design collector were found to be 55.2%, 44.6%, and 39.7% for the single-pass and 60.8%, 50.9% and 45.4% for the double-pass collector at 30, 50, and 70 mm bed heights and airflow rate of 0.043 kg/(s m2), respectively. The thermohydraulic efficiency, temperature difference, and perforated cover surface temperature were analyzed at each test and their effects on the system performance were evaluated. The highest amount of pressure drop through the collector was measured in the collector with a 70-mm bed height and a maximum air flowrate.


2015 ◽  
Vol 19 (5) ◽  
pp. 1699-1708 ◽  
Author(s):  
Hafiz Ali ◽  
Arslan Bhatti ◽  
Muzaffar Ali

The performance of a double pass solar air heater was experimentally investigated using four different configurations. First configuration contained only absorber plate whereas copper tubes filled with thermal storage medium (paraffin wax) were added on the absorber plate in the second configuration. Aluminum and steel rods as thermal enhancer were inserted in the middle of paraffin wax of each tube for configurations three and four respectively. Second configuration provided useful heat for about 1.5 hours after the sunset compared to first configuration. Configurations three and four provided useful heat for about 2 hours after the sunset. The maximum efficiency of about 96% was achieved using configuration three (i.e. using Aluminum rods in the middle of copper tubes filled with paraffin wax).


2019 ◽  
Vol 25 (2) ◽  
pp. 1-17 ◽  
Author(s):  
Abdulrahman Shakir Mahmood

In this paper, an experimental study was conducted to enhance the thermal performance of a double-pass solar air heater (SAH) using phase change material (PCM) for thermal storage at climatic conditions of Baghdad city - Iraq. The double-pass solar air heater integrated with thermal storage system was manufactured and tested to ensure that the air heating reserved after the absence of the sun. The rectangular cavity filled with paraffin wax was used as a latent heat storage and incorporated into the lower channel of solar air heater. Experiments were carried out to evaluate the charging and discharging characteristics of two similar designed solar air collectors with and without using phase change material at a constant air mass flow rate of (0.0375 kg/sec). The parameters that affect the thermal performance of the SAH with and without the PCMs presented by solar radiation, the difference in air temperature, outlet air temperature, instantaneous thermal efficiency, and daily efficiency are evaluated. The experimental results show that when using the PCM, the temperature of the outlet air was enhanced and increased over the ambient temperature by (1.5 - 6.5 C) after sunset for 5 hours period. It was found that the instantaneous thermal efficiency of the heater using thermal storage exceeds 100% after sunset, this is due to a large amount of heat stored in the paraffin wax that has been released during the discharge process. Also, it was found that the daily efficiency of the double pass SAH integrated with and without thermal energy storage unit was (56, 47%) respectively.  


2020 ◽  
Vol 27 (26) ◽  
pp. 32270-32282 ◽  
Author(s):  
Mohammed Mossad Hegazy ◽  
Ahmed El-Sebaii ◽  
Mohammed Raafat Ramadan ◽  
Saad Aboul-Enein ◽  
Abd El-Monem Khallaf

2018 ◽  
Author(s):  
D.V.N. Lakshmi ◽  
Palanisamy Muthukumar ◽  
Dr.Apurba Layek ◽  
Abhimanyu Kumar Singh ◽  
Sushoban Das

Solar Energy ◽  
2011 ◽  
Vol 85 (7) ◽  
pp. 1479-1487 ◽  
Author(s):  
M.F. El-khawajah ◽  
L.B.Y. Aldabbagh ◽  
F. Egelioglu

Sign in / Sign up

Export Citation Format

Share Document