Application of Sustainable and Low-Cost Sludge-Based Adsorbents for Textile Dye Degradation

Author(s):  
A. Geethakarthi
Keyword(s):  
Low Cost ◽  
2021 ◽  
Author(s):  
Harsha Bantawal ◽  
Sandhya U. Shenoy ◽  
Denthaje Krishna Bhat

CaTiO3 has attracted enormous interest in the field of photocatalytic dye degradation and water splitting owing to its low cost, excellent physicochemical stability and structural tunability. Herein, we have developed...


2021 ◽  
Vol 02 ◽  
Author(s):  
Amanda Carolina Soares Jucá ◽  
Francisco Henrique Pereira Lopes ◽  
Herbert Vieira Silva-Júnior ◽  
Lara Kelly Ribeiro Silva ◽  
Elson Longo ◽  
...  

Aims: In the present study, we investigate the photocatalytic properties of α-Ag2WO4 nanocrystals-modified Palygorskite (PAL) clay synthesized by the impregnation method. The PAL clay was chemically purified and heat-treated (500 ºC for 2 h), which served as an excellent supporting matrix for loading α-Ag2WO4(α-AWO) nanocrystals. Background: Water contamination is one of the most serious problems affecting human health, ecosystem survival, and the economic growth of societies. Industrial effluents, such as textile dyes, when not treated and improperly discharged into water resources are considered the main cause of water pollution. Thus the scientific community has been developing effective remediation technologies based on advanced oxidative processes to reduce the harmful effects of these organic pollutants. Objective: Improve the photocatalytic activity of PAL clay with α-AWO nanocrystals to degradation of Rhodamine B (RhB) dye. Methods: We purify and heat-treated the PAL clay, synthesize nanocrystals ofα-AWO nanocrystals and modify PAL clay with 30% α-AWO nanocrystals by the impregnation method. The modified PAL clay was able to improve RhB dye degradation. The materials were characterized by XRD, RAMAN,FE-SEM, FT-IR, XRF, etc. The samples were used as photocatalysts under UV-C lamps for the degradation of RhB dye in order to analyze its catalytic performances. Results: ThePAL clay modified with 30% α-AWO nanocrystals showed a catalytic efficiency of 79%, and degradation kinetics about 16 times higher when compared to PAL-500 only purified and heat-treated at 500 ºC. In this way, this PAL-modified is an alternative as a low-cost photocatalyst for the degradation of RhB dye. Conclusion: Ultraviolet-Visiblespectra revealed that our materials have opticalband gap energies controlled by indirect and direct electronic transitions and suitable to be activated under ultraviolet illumination. The adequate amount (30 wt.%) of α-Ag2WO4 nanocrystals added to PAL brought significant improvement of photocatalytic activity for the degradation of rhodamine B. Finally, a photocatalytic mechanism was proposed in detail.


2021 ◽  
Author(s):  
Sabri Ouni ◽  
Naim Bel Haj Mohamed ◽  
Noureddine Chaaben ◽  
Adrian Bonilla-Petriciolet ◽  
Mohamed Haouari

Abstract Undoped and Mn-doped ZnS nanocrystals encapsulated with thioglycolic acid were synthetized and characterized with different techniques, and finally tested in the photodegradation of a methyl orange in aqueous solution under UV and sunlight irradiations. FTIR and X-ray diffraction results confirmed the functionalization of these nanocrystals surface by thioglycolic acid and the formation of crystalline structures of ZnS and Mn-doped ZnS with cubic and hexagonal phases. Calculated average size of ZnS nanocrystals was in the range of 2 - 3 nm. It was observed a blue shift of the absorbance threshold and the estimated bandgap energies were higher than that of Bulk ZnS thus confirming the quantum confinement effect of charge carriers. Photoluminescence spectra of ZnS nanocrystals exhibited emission in the range of 410- 490 nm and the appearance of an additional emission band around 580 nm (2.13eV) connected to the 4𝑇1→ 6𝐴1 transition of the Mn2+ions. Photodegradation of methylene orange with undoped and Mn-doped ZnS-TGA nanocrystals was investigated. Dye adsorption prior to photocatalysis using nanocrystals was studied via kinetic experiments and statistical physics models. The maximum dye adsorption capacity on doped ZnS-TGA was ~ 26.98 mg/g. The adsorption kinetic was found to follow the pseudo-second-order kinetic model.According to the statistical physics results, the calculated adsorption energy was 22.47-23.47 kJ/mol and it showed that the dye adsorption was associated to the hydrogen interaction where the removal process was feasible and multi-molecular. The photocatalytic activity of undoped ZnS nanoparticles under UV irradiation showed better efficiency than doped nanocrystals thus indicating that manganese doping generated a dropping of the photocatalytic degradation of the dye. Dye degradation efficiency of 81.37% using ZnS-TGA nanocrystals was achieved after 6 min, which indicated that ZnMnS-TGA nanocrystals may be considered as an alternative low cost and environmental friendly material for facing water pollution caused by organic compounds via photodegradation processes.


2019 ◽  
Vol 7 (3) ◽  
pp. 103114
Author(s):  
Bilquees Tabasum ◽  
Prajakta R. Dhagale ◽  
Kirti M. Nitnaware ◽  
Harichandra A. Nikule ◽  
T.D. Nikam

2019 ◽  
Vol 8 (1) ◽  
pp. 895-900 ◽  
Author(s):  
Santhanam Mohan ◽  
Manickam Vishnu Devan

Abstract The photocatalysis of Ag/Ni bi-metallic nano-particles on safranin O dye degradation was evaluated by UV light irradiations. Ag/Ni bi-metallic nanoparticles were synthesized by the green approach using Zingiber officinale root (Zinger) extract. The average particles size of Ag/Ni bi-metallic nanoparticles was found to be 70-88 nm from SEM image and from XRD patterns it was confirmed that the existence of Ag/Ni bi-metallic nano-particles. 8 mg of Ag/Ni bi-metallic nanoparticles present in 40 mL of 10 ppm dye, degraded completely in presence of UV light irradiations within 30 min time durations. The effect of dye degradation within a short period of time (30 min) was due to wide band gap energy and photochemical redox reactions.


RSC Advances ◽  
2016 ◽  
Vol 6 (5) ◽  
pp. 3552-3560 ◽  
Author(s):  
Sivasankar Annamalai ◽  
Manikandan Santhanam ◽  
Subramanian Sudanthiramoorthy ◽  
Kannan Pandian ◽  
Marta Pazos

The present study focuses on the electrokinetic process for the in situ formation of electroactive species at the anode.


2013 ◽  
Vol 16 (3) ◽  
pp. 501-511 ◽  
Author(s):  
Sivarajan Meenatchisundaram ◽  
Murugan Devaraj ◽  
Chockalingam Lajapathi Rai ◽  
Kathiravan Mathur Nadarajan

Sign in / Sign up

Export Citation Format

Share Document