Use of Low Cost Nano-porous Materials of Pomelo Fruit Peel Wastes in Removal of Textile Dye

2011 ◽  
Vol 5 (5) ◽  
pp. 434-443 ◽  
Author(s):  
M. Jayarajan ◽  
R. Arunachala ◽  
G. Annadurai
Nanoscale ◽  
2013 ◽  
Vol 5 (13) ◽  
pp. 6173 ◽  
Author(s):  
Irene Emmanuelawati ◽  
Jie Yang ◽  
Jun Zhang ◽  
Hongwei Zhang ◽  
Liang Zhou ◽  
...  

Desalination ◽  
2011 ◽  
Vol 275 (1-3) ◽  
pp. 26-36 ◽  
Author(s):  
Susmita Dutta ◽  
Aparupa Bhattacharyya ◽  
Arnab Ganguly ◽  
Samya Gupta ◽  
Srabanti Basu

2021 ◽  
Vol 9 ◽  
Author(s):  
Kaiwei Chen ◽  
Linlin Du ◽  
Peng Gao ◽  
Junli Zheng ◽  
Yuanli Liu ◽  
...  

The carboxylate-functionalized passion fruit peel (PFPCS) was an efficient and rapid biosorbent for wastewater treatment. The PFPCS exhibited excellent selectivity to the cationic dyes, where the maximum adsorption capacities for methylene blue (MB) and methyl violet (MV) were 1,775.76 mg g−1 and 3,756.33 mg g−1, respectively. And the adsorption process of MB and MV on PFPCS reached equilibrium within 20 min. Moreover, the adsorption conditions and mechanisms were investigated. The adsorption process was in good agreement with the pseudo-second-order and Langmuir isotherm models. The adsorption mechanism was also proposed to be electrostatic interaction and hydrogen bond. After six cycles of desorption-adsorption, the removal efficient of MB and MV could be kept above 95%. Thus, PFPCS was considered as a highly efficient absorbent for removing cationic dyes from polluted water due to excellent adsorption characteristics, low cost and environmental friendliness.


2018 ◽  
Vol 198 ◽  
pp. 1165-1172 ◽  
Author(s):  
Consolación Sánchez-Sánchez ◽  
Almudena González-González ◽  
Francisco Cuadros-Salcedo ◽  
Francisco Cuadros-Blázquez

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
P. G. T. Dilrukshi ◽  
Helani Munasinghe ◽  
A. Buddhika G. Silva ◽  
P. G. S. M. De Silva

Colour is a key component to enhance the ultimate appetizing value and consumer acceptance towards foods and beverages. Synthetic food colours have been increasingly used than natural food colours by food manufacturers to attain certain properties such as low cost, improved appearance, high colour intensity, more colour stability, and uniformity. Varied foods and beverages available in the market may contain some nonpermitted synthetic colours and overuse of permitted synthetic colours. This may lead to severe health problems such as mutations, cancers, reduced haemoglobin concentrations, and allergic reactions. According to the Food Act, 2011 (No. 26 of 1980), Sri Lanka, only nine synthetic food colours are permitted and the colour concentration cannot exceed 100 ppm as a single component or in combination. This study aims to identify the synthetic food colours in confectioneries and beverages available in Jaffna district, Sri Lanka. Randomly collected 110 samples from eleven Medical Officers Of Health areas in Jaffna district were analyzed by using thin layer chromatography and UV-visible spectrophotometry. According to the results, 100% beverages and 85% confectioneries contained permitted synthetic food colours. Out of all, 7% of the confectioneries did not contain any synthetic food colour and 8% of the confectioneries contained nonpermitted colours which do not comply with any of the permitted synthetic food colours. Tartrazine (E102) (41%) was the most used synthetic food colour in both confectioneries and beverages. Moreover, 60% of the beverages violated the label requirement without including proper colour ingredients. The study concluded that there is a high tendency to use synthetic food colours in confectioneries and beverages and some confectioneries contain unidentified colours including a textile dye. Therefore, the implementation of regulations and awareness programs of food colours for consumers and food manufacturers are highly recommended.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ibrahim A. Amar ◽  
Salma M. Hassan ◽  
Fatima H. Aqeela ◽  
Mohamed Y. Najem ◽  
Fatima A. Altohami

Purpose This paper aims to investigate the potential application of Balanites aegyptiaca bark powder (BABP) for removing a basic textile dye, methylene blue (MB), from aqueous solutions. Design/methodology/approach The biosorbent (BABP) was characterized using Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHPZC). Batch mode was selected to study the biosorption of MB onto BABP surface at different experimental conditions (shaking speed, contact time, initial solution pH, ionic strength, solution temperature, biosorbent dosage and initial dye concentration). Besides, the reusability of BABP for MB biosorption was also examined. Findings The biosorption results revealed that approximately 96% of MB was removed successfully at the optimized operational conditions. Pseudo-second-order and Langmuir models, respectively, better described the adsorption kinetics and isotherms. The monolayer biosorption capacity (qmax) for MB was about 97.09 mg/g. According to thermodynamics findings, the MB biosorption onto BABP is an exothermic and spontaneous process. The results demonstrate that BABP can be considered as potential eco-friendly, readily available and low-cost biosorbent for hazardous textile dyes removal from water bodies and also provides a promising method for minimization of agricultural solid wastes (e.g. plant barks). Originality/value The utilization of Balanites aegyptiaca bark powder (BABP), solid waste material, as low-cost and eco-friendly biosorbent for the removal of hazardous basic textile dye (methylene blue) from the aquatic environment.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2560
Author(s):  
Avinash A. Kadam ◽  
Bharat Sharma ◽  
Surendra K. Shinde ◽  
Gajanan S. Ghodake ◽  
Ganesh D. Saratale ◽  
...  

This study focuses on the development of a nanosupport based on halloysite nanotubes (HNTs), Fe3O4 nanoparticles (NPs), and thiolated chitosan (CTs) for laccase immobilization. First, HNTs were modified with Fe3O4 NPs (HNTs-Fe3O4) by the coprecipitation method. Then, the HNTs-Fe3O4 surface was tuned with the CTs (HNTs-Fe3O4-CTs) by a simple refluxing method. Finally, the HNTs- Fe3O4-CTs surface was thiolated (-SH) (denoted as; HNTs- Fe3O4-CTs-SH) by using the reactive NHS-ester reaction. The thiol-modified HNTs (HNTs- Fe3O4-CTs-SH) were characterized by FE-SEM, HR-TEM, XPS, XRD, FT-IR, and VSM analyses. The HNTs-Fe3O4-CTs-SH was applied for the laccase immobilization. It gave excellent immobilization of laccase with 100% activity recovery and 144 mg/g laccase loading capacity. The immobilized laccase on HNTs-Fe3O4-CTs-SH (HNTs-Fe3O4-CTs-S-S-Laccase) exhibited enhanced biocatalytic performance with improved thermal, storage, and pH stabilities. HNTs-Fe3O4-CTs-S-S-Laccase gave outstanding repeated cycle capability, at the end of the 15th cycle, it kept 61% of the laccase activity. Furthermore, HNTs-Fe3O4-CTs-S-S-Laccase was applied for redox-mediated removal of textile dye DR80 and pharmaceutical compound ampicillin. The obtained result marked the potential of the HNTs-Fe3O4-CTs-S-S-Laccase for the removal of hazardous pollutants. This nanosupport is based on clay mineral HNTs, made from low-cost biopolymer CTs, super-magnetic in nature, and can be applied in laccase-based decontamination of environmental pollutants. This study also gave excellent material HNTs-Fe3O4-CTs-SH for other enzyme immobilization processes.


2015 ◽  
Vol 3 (12) ◽  
pp. 6542-6548 ◽  
Author(s):  
Shaolei Wang ◽  
Liangxiao Tan ◽  
Chengxin Zhang ◽  
Irshad Hussain ◽  
Bien Tan

Two kinds of POSS-based organic–inorganic hybrid porous materials have been synthesized via Friedel–Crafts and Scholl coupling reactions, for the first time, using low-cost building blocks i.e., octaphenylsilsesquioxanes and simple knitting approaches to obtain high Brunauer–Emmett–Teller (BET) surface area porous polyhedral oligomeric silsesquioxane (POSS)-based hybrid materials.


RSC Advances ◽  
2016 ◽  
Vol 6 (101) ◽  
pp. 99120-99128 ◽  
Author(s):  
Gurpreet Kaur ◽  
Bikramjeet Singh ◽  
Paviter Singh ◽  
Manpreet Kaur ◽  
Karmjeet Kaur Buttar ◽  
...  

Preferentially grown nanostructured iron disulfide pyrite (111) was successfully synthesized using a low cost effective hydrothermal method, then employed as a photocatalyst for degradation of methylene blue and the textile dye Synazol Yellow K-HL.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 790
Author(s):  
Xiaolei Zhao ◽  
Junli Zheng ◽  
Shaohong You ◽  
Chongmin Liu ◽  
Linlin Du ◽  
...  

This study aimed to prepare surface amino-riched passion fruit peel (DAPFP) by amination reaction with low-cost biomaterials and use it as a biosorbent to adsorb Cr (VI). The specific physicochemical and structural properties of DAPFP were characterized by SEM, EDS, XRD, TG, Zeta, XPS, and FT-IR. The effects of pH value, initial concentration, adsorption time, coexisting ions, and temperature on the adsorption of Cr (VI) were systematically investigated. The results showed that within 90 min, DAPFP could reduce the concentration of Cr (VI) solution (1 mg/L−1) to an allowable safe level of drinking water (0.05 mg/L−1) specified by the World Health Organization. The adsorption process complies with pseudo-second-order kinetics and the Langmuir isotherm model. The adsorption capacity of the prepared biosorbent could reach 675.65 mg/g−1. The results of thermodynamic studies confirmed that the adsorption process was a self-discharging heat process. DAPFP also showed good reusability; even after being used repeatedly five times, it still showed excellent adsorption performance. FT-IR and XPS analyses showed that electrostatic attraction and reduction were the main reasons for the adsorption. By virtue of its low cost and excellent adsorption performance, DAPFP has a potential practical application as an adsorbent in treating Cr (VI) containing wastewater.


Sign in / Sign up

Export Citation Format

Share Document