Advances in Research on Sustained-Release Chlorine Dioxide Solid Preparations

Author(s):  
Weiwei Sun ◽  
Kun Hu ◽  
Haibo Wang ◽  
Jundong Wang ◽  
Guijuan Yang ◽  
...  
2019 ◽  
Vol 56 (3) ◽  
pp. 1095-1103 ◽  
Author(s):  
Baodong Zhang ◽  
Chongxing Huang ◽  
Linyun Zhang ◽  
Jian Wang ◽  
Xingqiang Huang ◽  
...  

2021 ◽  
pp. 108201322097628
Author(s):  
Sang-Hyun Park ◽  
Sang-Soon Kim ◽  
Dong-Hyun Kang

Formulations for the sustained release of chlorine dioxide (ClO2) gas were developed, and their gas-producing profiles and antimicrobial effects against Escherichia coli O157:H7 and Salmonella Typhimurium were evaluated in spinach leaves and tomatoes under different relative humidity (RH) conditions. Sodium chlorite (NaClO2) and citric acid were used to generate ClO2 gas, and the generation rate and maximum ClO2 gas concentration were controlled using diatomaceous earth (DE) and calcium chloride (CaCl2). Under 90% RH conditions, sustained release of ClO2 gas was achieved in presence of DE. When 12 g of DE was added to the mixture, the ClO2 gas concentration remained constant at 18 ± 1 ppmv for approximately 28 h. At 50% RH, addition of CaCl2 was effective in maintaining a constant ClO2 gas concentration. When 0.05 g of CaCl2 was added to mixtures containing 0.5 g of DE, ClO2 gas concentration remained constant at 11 ± 1 ppmv for approximately 26 h. Treatment with 30 ppmv of ClO2 gas at 90% RH achieved more than 6.16 and 5.48 log reductions of E. coli O157:H7 and S. Typhimurium on spinach leaves (in 15 min), and more than 6.78 and 6.34 log reductions of the same in tomatoes (in 10 min). The sustained release formulations for ClO2 gas, developed in this study, could facilitate the use of ClO2 gas as an antimicrobial agent in the food industry.


2007 ◽  
Vol 177 (4S) ◽  
pp. 515-515
Author(s):  
Nobuyuki Goya ◽  
Kotara Gotanda ◽  
Yasuko Tomizawa ◽  
Hiroshi Toma

TAPPI Journal ◽  
2013 ◽  
Vol 12 (10) ◽  
pp. 33-41 ◽  
Author(s):  
BRIAN N. BROGDON

This investigation evaluates how higher reaction temperatures or oxidant reinforcement of caustic extraction affects chlorine dioxide consumption during elemental chlorine-free bleaching of North American hardwood pulps. Bleaching data from the published literature were used to develop statistical response surface models for chlorine dioxide delignification and brightening sequences for a variety of hardwood pulps. The effects of higher (EO) temperature and of peroxide reinforcement were estimated from observations reported in the literature. The addition of peroxide to an (EO) stage roughly displaces 0.6 to 1.2 kg chlorine dioxide per kilogram peroxide used in elemental chlorine-free (ECF) bleach sequences. Increasing the (EO) temperature by Δ20°C (e.g., 70°C to 90°C) lowers the overall chlorine dioxide demand by 0.4 to 1.5 kg. Unlike what is observed for ECF softwood bleaching, the presented findings suggest that hot oxidant-reinforced extraction stages result in somewhat higher bleaching costs when compared to milder alkaline extraction stages for hardwoods. The substitution of an (EOP) in place of (EO) resulted in small changes to the overall bleaching cost. The models employed in this study did not take into account pulp bleaching shrinkage (yield loss), to simplify the calculations.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (11) ◽  
pp. 689-694
Author(s):  
QINGZHI MA ◽  
QI WANG ◽  
CHU WANG ◽  
NIANJIE FENG ◽  
HUAMIN ZHAI

The effect of oxygen (O2)-delignified pine kraft pulp pretreatment by high-purity, thermostable, and alkaline-tolerant xylanases on elemental chlorine free (ECF) bleaching of O2-delignification kraft pulp was studied. The study found that xylanase pretreatment preserved the intrinsic viscosity and yield of O2-delignified pulp while causing about 7% of delignification with high delignification selectivity. The xylanases with high purity, higher thermostability (75°C~80°C) in highly alkaline media (pH 8.0~9.5) could be applied on an industrial scale. Pulp pretreatment by the high-purity, thermostable, and alkaline tolerant xylanases could improve pulp brightness or reduce the chlorine dioxide (ClO2) consumption. In a D0ED1D2 bleaching sequence using the same amount of ClO2, the xylanase-pretreated pulp obtained a higher brightness (88.2% vs. 89.7% ISO) at the enzyme dose of 2 U/g pulp; or for the same brightness as control (88.2% ISO), the ClO2 dosage in the D0 stage was reduced by 27%, which represents a 16% savings in total ClO2 used for bleaching.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (9) ◽  
pp. 47-53 ◽  
Author(s):  
BRIAN N. BROGDON

Our previous investigation [1] re-analyzed the data from Basta and co-workers (1992 TAPPI Pulping Conference) to demonstrate how oxidative alkaline extraction can be augmented and how these changes affect chlorine dioxide consumption with elemental chlorine-free (ECF) sequences. The current study manipulates extraction delignification variables to curtail bleaching costs with a conventional U.S. Southern softwood kraft pulp. The economic advantages of ~0.35% to 0.65% H2O2 peroxide reinforcement in a 70°C (EOP)-stage versus 90°C (EO)-stage are predisposed to the brightness targets, to short or long bleach sequences, and to mill energy costs. Minimized bleaching costs are generally realized when a 90°C (EO) is employed in D0(EO)D1 bleaching, whereas a 70°C (EOP) is economically advantageous for D0(EOP)D1E2D2 bleaching. The findings we disclose here help to clarify previous ECF optimization studies of conventional softwood kraft pulps.


Sign in / Sign up

Export Citation Format

Share Document