Error Detection Using Syntactic Analysis for Air Traffic Speech

Author(s):  
Narayanan Srinivasan ◽  
S. R. Balasundaram
Author(s):  
Zhe Sun ◽  
Pingbo Tang

Losses of separation (LoS) are breaches of regulations that specify the minimum distance between aircraft in controlled airspace. Erroneous communications between air traffic controllers (ATCs) and pilots are leading contributors to LoS that result in elevated risk of fatal accidents. An air traffic control system that could identify communication errors promptly would, therefore, be advantageous. Establishing such a system requires a systematic characterization of communication errors to reveal how various communication arrangements and errors influence the development of LoS. Such know-how could guide the ATCs and pilots in identifying the parts of their communication processes and content that most influence the occurrence of LoS. Existing studies of LoS focus on simulation of aircraft operation processes with little quantitative analysis about how communication issues arise and result in elevated risks of LoS. This paper presents a method for supporting automatic communication error detection through integrated use of speech recognition, text analysis, and formal modeling of airport operational processes. The proposed method focuses on: identifying communication features to guide the detection of vulnerable communications; characterizing communication errors; and Bayesian Network modeling for predicting communication errors and LoS using the features derived from ATC–pilot communications. Major findings show that incorrect read-backs by pilots are highly correlated with a majority of LoS. Results indicate the proposed method could form a basis for automating communication error detection and preventing LoS. The integrated Automatic Speech Recognition and Natural Language Processing functions may be incorporated into existing aviation applications for real-time ATC–pilot communication monitoring and preventive LoS control.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yanyan Shi ◽  
Yuting Liang

Based on locness corpus, this paper uses Wordsmith 6.0, SPSS 24, and other software to explore the use of temporal connectives in Japanese writing by Chinese Japanese learners. This paper proposes a method of tense classification based on the Japanese dependency structure. This method analyzes the results of the syntactic analysis of Japanese dependence and combines the tense characteristics of the target language to extract tense-related information and construct a maximum entropy tense classification model. The model can effectively identify the tense, and its classification accuracy shows the effectiveness of the classification method. This paper proposes a temporal feature extraction algorithm oriented to the hierarchical phrase expression model. The end-to-end speech recognition system has become the development trend of large-scale continuous speech recognition because of its simplicity and efficiency. In this paper, the end-to-end technology based on link timing classification is applied to Japanese speech recognition. Taking into account the characteristics of Japanese hiragana, katakana, and Japanese kanji writing forms, through experiments on the Japanese data set, different suggestions are explored. The final effect is better than mainstream speech recognition systems based on hidden Markov models and two-way long and short-term memory networks. This algorithm can extract the temporal characteristics of rules that meet certain conditions while extracting expression rules. These tense characteristics can guide the selection of rules in the expression process, make the expression results more in line with linguistic knowledge, and ensure the choice of relevant vocabulary and the structural ordering of the language. Through the analysis of time series and static information, we combine the time and space dimensions of the network structure. Using connectionist temporal classification (CTC) technology, an end-to-end speech recognition method for pronunciation error detection and diagnosis tasks is established. This method does not require phonemic information nor does it require forced alignment. The extended initials and finals are the error primitives, and 64 types of errors are designed. The experimental results show that the method can effectively detect the wrong pronunciation, the detection accuracy rate is 87.07%, the false rejection rate is 7.83%, and the error rate is 87.07%. The acceptance rate is 25.97%. This method uses network information more comprehensively than traditional methods, and the model is more effective. After detailed experiments, this article evaluates the prediction effect of this method and previous methods on the data set. This method improves the prediction accuracy by about 15% and achieves the expected goal of the work in this paper.


2015 ◽  
Vol 5 (1) ◽  
pp. 3-17 ◽  
Author(s):  
Michaela Schwarz ◽  
K. Wolfgang Kallus

Since 2010, air navigation service providers have been mandated to implement a positive and proactive safety culture based on shared beliefs, assumptions, and values regarding safety. This mandate raised the need to develop and validate a concept and tools to assess the level of safety culture in organizations. An initial set of 40 safety culture questions based on eight themes underwent psychometric validation. Principal component analysis was applied to data from 282 air traffic management staff, producing a five-factor model of informed culture, reporting and learning culture, just culture, and flexible culture, as well as management’s safety attitudes. This five-factor solution was validated across two different occupational groups and assessment dates (construct validity). Criterion validity was partly achieved by predicting safety-relevant behavior on the job through three out of five safety culture scores. Results indicated a nonlinear relationship with safety culture scales. Overall the proposed concept proved reliable and valid with respect to safety culture development, providing a robust foundation for managers, safety experts, and operational and safety researchers to measure and further improve the level of safety culture within the air traffic management context.


2019 ◽  
Vol 9 (1) ◽  
pp. 2-11
Author(s):  
Marina Efthymiou ◽  
Frank Fichert ◽  
Olaf Lantzsch

Abstract. The paper examines the workload perceived by air traffic control officers (ATCOs) and pilots during continuous descent operations (CDOs), applying closed- and open-path procedures. CDOs reduce fuel consumption and noise emissions. Therefore, they are supported by airports as well as airlines. However, their use often depends on pilots asking for CDOs and controllers giving approval and directions. An adapted NASA Total Load Index (TLX) was used to measure the workload perception of ATCOs and pilots when applying CDOs at selected European airports. The main finding is that ATCOs’ workload increased when giving both closed- and open-path CDOs, which may have a negative impact on their willingness to apply CDOs. The main problem reported by pilots was insufficient distance-to-go information provided by ATCOs. The workload change is important when considering the use of CDOs.


2018 ◽  
Vol 8 (2) ◽  
pp. 100-111 ◽  
Author(s):  
Maik Friedrich ◽  
Christoph Möhlenbrink

Abstract. Owing to the different approaches for remote tower operation, a standardized set of indicators is needed to evaluate the technical implementations at a task performance level. One of the most influential factors for air traffic control is weather. This article describes the influence of weather metrics on remote tower operations and how to validate them against each other. Weather metrics are essential to the evaluation of different remote controller working positions. Therefore, weather metrics were identified as part of a validation at the Erfurt-Weimar Airport. Air traffic control officers observed weather events at the tower control working position and the remote control working position. The eight participating air traffic control officers answered time-synchronized questionnaires at both workplaces. The questionnaires addressed operationally relevant weather events in the aerodrome. The validation experiment targeted the air traffic control officer’s ability to categorize and judge the same weather event at different workplaces. The results show the potential of standardized indicators for the evaluation of performance and the importance of weather metrics in relation to other evaluation metrics.


2013 ◽  
Vol 3 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Yvonne Pecena ◽  
Doris Keye ◽  
Kristin Conzelmann ◽  
Dietrich Grasshoff ◽  
Peter Maschke ◽  
...  

The job of an air traffic controller (ATCO) is very specific and demanding. The assessment of potential suitable candidates requires a customized and efficient selection procedure. The German Aerospace Center DLR conducts a highly selective, multiple-stage selection procedure for ab initio ATCO applicants for the German Air Navigation Service Provider DFS. Successful applicants start their training with a training phase at the DFS Academy and then continue with a unit training phase in live traffic. ATCO validity studies are scarcely reported in the international scientific literature and have mainly been conducted in a military context with only small and male samples. This validation study encompasses the data from 430 DFS ATCO trainees, starting with candidate selection and extending to the completion of their training. Validity analyses involved the prediction of training success and several training performance criteria derived from initial training. The final training success rate of about 79% was highly satisfactory and higher than that of other countries. The findings demonstrated that all stages of the selection procedure showed predictive validity toward training performance. Among the best predictors were scores measuring attention and multitasking ability, and ratings on general motivation from the interview.


Sign in / Sign up

Export Citation Format

Share Document