Development and Application of Experimental System for Horizontal Well Separate Layer Stimulation Technology

Author(s):  
Hong-yan Zhang ◽  
Jin-you Wang ◽  
Chun-hui Zhang ◽  
Jian-hua Xie ◽  
Qing-bo Mao ◽  
...  
2013 ◽  
Vol 397-400 ◽  
pp. 252-256
Author(s):  
Kun Kun Fan ◽  
Ren Yuan Sun ◽  
Zi Chao Ma ◽  
Yun Fei Zhang ◽  
Yan Wei ◽  
...  

Horizontal well and hydraulic fracturing are the main technologies for shale gas development. The desorption properties of shales are very important data for shale gas development. In order to simulate the desorption process in shales with horizontal well and fractures, a new method for shale sample preparation and a new experimental system for the evaluation were developed. The effect of the number and half-length of fractures on the desorption rate and the desorption equilibrium time were measured when the system pressure drops from 9.2MPa to 7MPa. Experiments show that the initial desorption rate increases and the equilibrium time decreases with the increase of the number and half-length of fractures. Within the scope of the experiments, the number of fractures is more important than the half-length of fractures for the desorption rate.


SPE Journal ◽  
2022 ◽  
pp. 1-15
Author(s):  
Lishan Yuan ◽  
Fujian Zhou ◽  
Minghui Li ◽  
Xuda Yang ◽  
Jiaqi Cheng ◽  
...  

Summary Temporary plugging and diverting fracturing of the horizontal well is the primary option to promote production for tight reservoirs. Successful entry of diverters into the perforation is the basis and prerequisite for effective plugging. However, the transport behavior of the diverter during multicluster fracturing remains unclear. In this paper, we build a large-scale diverter transport experimental system, capable of conducting experiments with large flow rates and high pressures. The concerned factors include the injection rate, perforation flow ratio (PFRO), fluid viscosity, and perforation angle. The results show that the diverter transport effect is significantly different because of different flow distribution among perforations. Also, the diverter can enter the perforation only when the flow rate of the perforation reaches a certain value. In addition, the minimum critical PFRO has an “oblique L-shaped” relationship with the injection rate. Although it is difficult for the diverter to enter the perforation on the high side of the horizontal wellbore, increasing the viscosity of the carrying fluid or using a multidensity mixed diverter can effectively solve this problem. Furthermore, the field case shows that the experimentally obtained diverter transport pattern can be applied to the field to predict the location of the diverter and improve the temporary plugging effect. The findings of this work lay a theoretical foundation for subsequent temporary plugging and diverting fracturing control.


2019 ◽  
Vol 35 (1) ◽  
pp. 126-136 ◽  
Author(s):  
Tour Liu ◽  
Tian Lan ◽  
Tao Xin

Abstract. Random response is a very common aberrant response behavior in personality tests and may negatively affect the reliability, validity, or other analytical aspects of psychological assessment. Typically, researchers use a single person-fit index to identify random responses. This study recommends a three-step person-fit analysis procedure. Unlike the typical single person-fit methods, the three-step procedure identifies both global misfit and local misfit individuals using different person-fit indices. This procedure was able to identify more local misfit individuals than single-index method, and a graphical method was used to visualize those particular items in which random response behaviors appear. This method may be useful to researchers in that it will provide them with more information about response behaviors, allowing better evaluation of scale administration and development of more plausible explanations. Real data were used in this study instead of simulation data. In order to create real random responses, an experimental test administration was designed. Four different random response samples were produced using this experimental system.


1968 ◽  
Vol 19 (03/04) ◽  
pp. 526-532 ◽  
Author(s):  
L. B Nanninga ◽  
M. M Guest

SummaryThe purified anticoagulant split product of fibrinogen has antifibrinolytic and anti-fibrinogenolytic activity. This was investigated by lysis times of fibrin and by the rate of disappearance of fibrinogen in plasma and in a purified system. A new method was used to measure fibrinogenolytic activity. In the experimental system which we have used no indication of additional breakdown of the anticoagulant split product in the presence of fibrinolysin was obtained.


1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S223-S246 ◽  
Author(s):  
C. R. Wira ◽  
H. Rochefort ◽  
E. E. Baulieu

ABSTRACT The definition of a RECEPTOR* in terms of a receptive site, an executive site and a coupling mechanism, is followed by a general consideration of four binding criteria, which include hormone specificity, tissue specificity, high affinity and saturation, essential for distinguishing between specific and nonspecific binding. Experimental approaches are proposed for choosing an experimental system (either organized or soluble) and detecting the presence of protein binding sites. Techniques are then presented for evaluating the specific protein binding sites (receptors) in terms of the four criteria. This is followed by a brief consideration of how receptors may be located in cells and characterized when extracted. Finally various examples of oestrogen, androgen, progestagen, glucocorticoid and mineralocorticoid binding to their respective target tissues are presented, to illustrate how researchers have identified specific corticoid and mineralocorticoid binding in their respective target tissue receptors.


Sign in / Sign up

Export Citation Format

Share Document