Experimental Study on Sensitivity of Influencing Factors of Freezing and Thawing of Frozen Soil

Author(s):  
Wei Wang ◽  
Huanan Liu ◽  
Yan Lv
1999 ◽  
Vol 42 (S1) ◽  
pp. 30-37 ◽  
Author(s):  
Jianming Zhang ◽  
Yuanlin Zhu ◽  
Jiayi Zhang

1998 ◽  
Vol 35 (2) ◽  
pp. 234-250 ◽  
Author(s):  
JF (Derick) Nixon ◽  
Nick Holl

A geothermal model is described that simulates simultaneous deposition, freezing, and thawing of mine tailings or sequentially placed layers of embankment soil. When layers of soil or mine tailings are placed during winter subfreezing conditions, frozen layers are formed in the soil profile that may persist with time. The following summer, warmer soil placement may not be sufficient to thaw out layers from the preceding winter. Remnant frozen soil layers may persist for many years or decades. The analysis is unique, as it involves a moving upper boundary and different surface snow cover functions applied in winter time. The model is calibrated based on two uranium mines in northern Saskatchewan. The Rabbit Lake scenario involves tailings growth to a height of 120 m over a period of 24 years. At Key Lake, tailings increase in height at a rate of 1.3 m/year. Good agreement between the observed position of frozen layers and those predicted by the model is obtained. Long-term predictions indicate that from 80 to 200 years would be required to thaw out the frozen layers formed during placement, assuming 1992 placement conditions continue. Deposition rates of 1.5-3 m/year give the largest amounts of frozen ground. The amount of frozen ground is sensitive to the assumed snow cover function during winter.Key words: geothermal, model, tailings, freezing, deposition.


2004 ◽  
Vol 8 (4) ◽  
pp. 706-716 ◽  
Author(s):  
K. Rankinen ◽  
T. Karvonen ◽  
D. Butterfield

Abstract. Microbial processes in soil are moisture, nutrient and temperature dependent and, consequently, accurate calculation of soil temperature is important for modelling nitrogen processes. Microbial activity in soil occurs even at sub-zero temperatures so that, in northern latitudes, a method to calculate soil temperature under snow cover and in frozen soils is required. This paper describes a new and simple model to calculate daily values for soil temperature at various depths in both frozen and unfrozen soils. The model requires four parameters: average soil thermal conductivity, specific heat capacity of soil, specific heat capacity due to freezing and thawing and an empirical snow parameter. Precipitation, air temperature and snow depth (measured or calculated) are needed as input variables. The proposed model was applied to five sites in different parts of Finland representing different climates and soil types. Observed soil temperatures at depths of 20 and 50 cm (September 1981–August 1990) were used for model calibration. The calibrated model was then tested using observed soil temperatures from September 1990 to August 2001. R2-values of the calibration period varied between 0.87 and 0.96 at a depth of 20 cm and between 0.78 and 0.97 at 50 cm. R2-values of the testing period were between 0.87 and 0.94 at a depth of 20cm, and between 0.80 and 0.98 at 50cm. Thus, despite the simplifications made, the model was able to simulate soil temperature at these study sites. This simple model simulates soil temperature well in the uppermost soil layers where most of the nitrogen processes occur. The small number of parameters required means that the model is suitable for addition to catchment scale models. Keywords: soil temperature, snow model


2013 ◽  
Vol 353-356 ◽  
pp. 221-224
Author(s):  
Shuang Zhang ◽  
Chun An Tang ◽  
Lei Li ◽  
Shuai Li

Saturated frozen soil is composed of soil, unfrozen water and ice, whose subgrade deformation is due to the weakened of internal structure which coursed by damage of the materials in the process of the cycle of freezing and thawing. Considing of the heterogeneity of saturated frozen soil and the phase transition between water and ice, and using of the damage mechanics theory, thermodynamics theory, filtration mechanics theory, a constitutive model of saturated frozen soil is setted up, which is of the coupfing problem of temperature field, water field and stress field. The rationality and validity of the model is verified by the experiment. It is also provided a new method for the study of frozen soil.


2020 ◽  
Vol 37 (5) ◽  
pp. 497-506
Author(s):  
Yun JIANG ◽  
Guoqing XU ◽  
Yang SHI ◽  
Xinghang ZENG ◽  
Tianyi WANG

2021 ◽  
Vol 211 ◽  
pp. 141-152
Author(s):  
M. Guessous ◽  
A. Rich ◽  
S. Mountadar ◽  
F.Z. Karmil ◽  
J. El Hajri ◽  
...  

Fuel ◽  
2020 ◽  
Vol 269 ◽  
pp. 117467 ◽  
Author(s):  
Xiangliang Tian ◽  
Chang Liu ◽  
Maohua Zhong ◽  
Congling Shi

Sign in / Sign up

Export Citation Format

Share Document