Multispectral Image Denoising by Multi-scale Spatial-spectral Residual Network

Author(s):  
Xiujuan Lang ◽  
Tao Lu ◽  
Jiaming Wang ◽  
Junjun Jiang ◽  
Huabin Zhou ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1269
Author(s):  
Jiabin Luo ◽  
Wentai Lei ◽  
Feifei Hou ◽  
Chenghao Wang ◽  
Qiang Ren ◽  
...  

Ground-penetrating radar (GPR), as a non-invasive instrument, has been widely used in civil engineering. In GPR B-scan images, there may exist random noise due to the influence of the environment and equipment hardware, which complicates the interpretability of the useful information. Many methods have been proposed to eliminate or suppress the random noise. However, the existing methods have an unsatisfactory denoising effect when the image is severely contaminated by random noise. This paper proposes a multi-scale convolutional autoencoder (MCAE) to denoise GPR data. At the same time, to solve the problem of training dataset insufficiency, we designed the data augmentation strategy, Wasserstein generative adversarial network (WGAN), to increase the training dataset of MCAE. Experimental results conducted on both simulated, generated, and field datasets demonstrated that the proposed scheme has promising performance for image denoising. In terms of three indexes: the peak signal-to-noise ratio (PSNR), the time cost, and the structural similarity index (SSIM), the proposed scheme can achieve better performance of random noise suppression compared with the state-of-the-art competing methods (e.g., CAE, BM3D, WNNM).


2020 ◽  
Vol 10 (24) ◽  
pp. 9132
Author(s):  
Liguo Weng ◽  
Xiaodong Zhang ◽  
Junhao Qian ◽  
Min Xia ◽  
Yiqing Xu ◽  
...  

Non-intrusive load disaggregation (NILD) is of great significance to the development of smart grids. Current energy disaggregation methods extract features from sequences, and this process easily leads to a loss of load features and difficulties in detecting, resulting in a low recognition rate of low-use electrical appliances. To solve this problem, a non-intrusive sequential energy disaggregation method based on a multi-scale attention residual network is proposed. Multi-scale convolutions are used to learn features, and the attention mechanism is used to enhance the learning ability of load features. The residual learning further improves the performance of the algorithm, avoids network degradation, and improves the precision of load decomposition. The experimental results on two benchmark datasets show that the proposed algorithm has more advantages than the existing algorithms in terms of load disaggregation accuracy and judgments of the on/off state, and the attention mechanism can further improve the disaggregation accuracy of low-frequency electrical appliances.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 319
Author(s):  
Yi Wang ◽  
Xiao Song ◽  
Guanghong Gong ◽  
Ni Li

Due to the rapid development of deep learning and artificial intelligence techniques, denoising via neural networks has drawn great attention due to their flexibility and excellent performances. However, for most convolutional network denoising methods, the convolution kernel is only one layer deep, and features of distinct scales are neglected. Moreover, in the convolution operation, all channels are treated equally; the relationships of channels are not considered. In this paper, we propose a multi-scale feature extraction-based normalized attention neural network (MFENANN) for image denoising. In MFENANN, we define a multi-scale feature extraction block to extract and combine features at distinct scales of the noisy image. In addition, we propose a normalized attention network (NAN) to learn the relationships between channels, which smooths the optimization landscape and speeds up the convergence process for training an attention model. Moreover, we introduce the NAN to convolutional network denoising, in which each channel gets gain; channels can play different roles in the subsequent convolution. To testify the effectiveness of the proposed MFENANN, we used both grayscale and color image sets whose noise levels ranged from 0 to 75 to do the experiments. The experimental results show that compared with some state-of-the-art denoising methods, the restored images of MFENANN have larger peak signal-to-noise ratios (PSNR) and structural similarity index measure (SSIM) values and get better overall appearance.


Author(s):  
Jing Tan ◽  
Yu Zhang ◽  
Huiyuan Fu ◽  
Huadong Ma ◽  
Ning Gao

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254054
Author(s):  
Gaihua Wang ◽  
Lei Cheng ◽  
Jinheng Lin ◽  
Yingying Dai ◽  
Tianlun Zhang

The large intra-class variance and small inter-class variance are the key factor affecting fine-grained image classification. Recently, some algorithms have been more accurate and efficient. However, these methods ignore the multi-scale information of the network, resulting in insufficient ability to capture subtle changes. To solve this problem, a weakly supervised fine-grained classification network based on multi-scale pyramid is proposed in this paper. It uses pyramid convolution kernel to replace ordinary convolution kernel in residual network, which can expand the receptive field of the convolution kernel and use complementary information of different scales. Meanwhile, the weakly supervised data augmentation network (WS-DAN) is used to prevent over fitting and improve the performance of the model. In addition, a new attention module, which includes spatial attention and channel attention, is introduced to pay more attention to the object part in the image. The comprehensive experiments are carried out on three public benchmarks. It shows that the proposed method can extract subtle feature and achieve classification effectively.


Sign in / Sign up

Export Citation Format

Share Document