BLDC Motor Torque Ripple Minimization Technique by Using Isolated Type DC–DC Buck–Boost Converter

Author(s):  
Arpit Sadda ◽  
Jay Prakash Keshri ◽  
Harpal Tiwari ◽  
Vishal Jain
Author(s):  
V. Ramesh ◽  
Y. Kusuma Latha

There is a great concern of torque ripple and power quality of three phase voltage source converter fed Permanent Magnet Brushless DC Motor (PMBLDCM). In this paper, two control strategies for BLDC motor drive has been investigated. One of the control strategies is based on PFC - CUK converter fed PMBLDCM drive and another one is PFC- interleaved boost converter fed BLDC motor drive. Comparison has been made between the two control stragies in terms of Torque ripple, Total harmonic distortion (THD) and power factor for different operating speeds. The proposed work as been implemented under MATLAB/simulink environment. Simulation results are presented to validate proposed work. From the results, it is observed that PFC interleaved Boost converter fed BLDC motor drive is more effective compared to CUK converter fed BLDC motor drive.


Author(s):  
V. Ramesh ◽  
Y. Kusuma Latha

In this paper, Zero-Voltage-Transition (ZVT) two-cell interleaved boost Power Factor Correction (PFC) converter for voltage source Inverter (VSI) fed permanent magnet brushless DC motor (PMBLDCM) drive has been proposed Scheme reduce the torque ripple of BLDC motor drive and also reduce the switching losses of VSI for Which an auxiliary circuit is designed and added to the interleaved boost converter.  For achieving soft switching, only one switch is used in auxiliary circuit which reduces the torque ripple and switching losses. In this proposed control strategy, the DC link voltage is controlled with interleaved boost converter which is proportional to the desired speed of the BLDC motor. In this paper, six switch and four switch VSI is also implemented with interleaved boost converter topology. A comparison is made between the six switch and Four Switch VSI fed PMBLDC Motor drive and Torque Analysis as been done. To validate the proposed work, results are presented. The results showed that proposed converter control strategy operating under soft switching mode improves the efficiency of the drive system with PFC feature in wide range of the speed control.


Author(s):  
V. Ramesh ◽  
Y. Kusuma Latha

<p>In this paper, interleaved power factor correction (PFC) boost converter based control strategy for BLDC motor has been Proposed. The converter exhibits the characteristics of voltage doublers for duty greater than 0.5. The switching losses and losses during reverse recovery operation are considerably reduced in this proposed topology. This is due reduction in switching voltages due to voltage doubler mode. The proposed topology has high efficiency compared to conventional counterpart due to slight increase in conduction losses. In this paper, the proposed PFC control Strategy has been applied to a six switch and four switch VSI fed BLDC Motor drive for effective torque ripple minimization. A comparison is also made between the six switch and Four Switch VSI fed PMBLDC Motor drive.</p><br />


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1720
Author(s):  
Hashim Raza Khan ◽  
Majida Kazmi ◽  
Haris Bin Ashraf ◽  
Muhammad Hashir Bin Khalid ◽  
Abul Hasan ◽  
...  

The usage of BLDC motors in the low-power range is increasing rapidly in home appliances such as ceiling fans. This has necessitated the development of reliable, compact and efficient AC-DC power supplies for motor drive circuitry. This paper presents a power supply design consisting of an AC-DC isolated PFC Cuk converter with integrated magnetics that supplies a single-shunt voltage source inverter for the sensorless drive of the BLDC fan motor. The proposed power supply design is comprised of an integrated magnetics structure in which the two inductors and the transformer windings share the same core. The zero input and output ripple current conditions have been derived from the reluctance model of the magnetic assembly. Smooth operation of the motor by minimizing the motor torque ripples is evident from the results. The Cuk converter operates in continuous conduction mode (CCM), employing the current multiplier method. The CCM-based current multiplier control loop ensures a near-unity power factor as well as low total harmonic distortion in the supply current. The current loop also provides over-current protection, enhancing reliability of the system. Moreover, the speed of the BLDC motor is controlled by the field oriented control (FOC) algorithm, which enables direct operation with alternate energy sources such as batteries and solar photovoltaic panels. The performance of the proposed supply is validated: motor torque ripple is reduced to only 2.14% while maintaining 0.999 power factor and only 4.72% THD at full load. Failure modes analysis has also been performed through software simulations, using the PLECS simulation environment. Due to the reliable power supply design with low ripples, it is well suited for low-power BLDC motors in home appliances and small power tools, in addition to ceiling fans.


Sign in / Sign up

Export Citation Format

Share Document