Utilisation of Biomineralisation Method in Recycled Coarse Aggregate Concrete with Fly Ash

Author(s):  
Zuowei Liu ◽  
Chee Seong Chin ◽  
Jun Xia
2011 ◽  
Vol 194-196 ◽  
pp. 1001-1006 ◽  
Author(s):  
Hai Feng Yang ◽  
Zhi Heng Deng ◽  
Xue Liang Li

24 100mm × 100mm × 300mm recycled concrete prisms and 96 150mm × 150mm × 150mm cubes are completed in this paper.The relationships of the carbonation depth in each carbonation age with replacement rate of recycled coarse aggregate and fly ash is studied; The SEM is used to observe the interface structure of recycled coarse aggregate concrete and compared with ordinary concrete, and finally,a recycled concrete carbonation model is proposed. The results showed that: the substitution of recycled coarse aggregate and fly ash cut down the recycled concrete carbonation resistance significantly, which are related with the replacement rate; the content of Ca(OH)2 in the recycled aggregate concrete decreased ,also there are obvious interface transition zone between the recycled coarse aggregate and the new cement;obvious cracks and large voids are exist before the recycled aggregate concrete is loaded, which lead directly to lower carbonation resistance of the recycled concrete.


in this examinations, it is made to test the power spots of reused coarse mix by methods for inadequate overriding of bond with GGBS and fly ash. on this examination, compressive power, split versatile power and flexural intensity of the reused bonds by techniques for the usage of partial shot of cement with outstanding potential results of GGBS and fly blazing remains. The results got is as differentiated and the regular bond.


2020 ◽  
Vol 12 (24) ◽  
pp. 10544
Author(s):  
Chunhong Chen ◽  
Ronggui Liu ◽  
Pinghua Zhu ◽  
Hui Liu ◽  
Xinjie Wang

Carbonation durability is an important subject for recycled coarse aggregate concrete (RAC) applied to structural concrete. Extensive studies were carried out on the carbonation resistance of RAC under general environmental conditions, but limited researches investigated carbonation resistance when exposed to chloride ion corrosion, which is an essential aspect for reinforced concrete materials to be adopted in real-world applications. This paper presents a study on the carbonation durability of two generations of 100% RAC with the effect of chloride ion corrosion. The quality evolution of recycled concrete coarse aggregate (RCA) with the increasing recycling cycles was analyzed, and carbonation depth, compressive strength and the porosity of RAC were measured before and after chloride ion corrosion. The results show that the effect of chloride ion corrosion negatively affected the carbonation resistance of RAC, and the negative effect was more severe with the increasing recycling cycles of RCA. Chloride ion corrosion led to a decrease in compressive strength, while an increase in carbonation depth and the porosity of RAC. The equation of concrete total porosity and carbonation depth was established, which could effectively judge the deterioration of carbonation resistance of RAC.


2011 ◽  
Vol 477 ◽  
pp. 280-289 ◽  
Author(s):  
Shao Wei Yao ◽  
Zhen Guo Gao ◽  
Chang Rui Wang

The properties of recycled coarse aggregate and the slump, the physical and mechanical properties and durability of recycled aggregate concrete were studied through tests. The results indicate that the slump, compressive strength and durability of concrete with recycled aggregate are lower than that of concrete with natural aggregate when recycled coarse aggregate fully absorbs water. However, the slump can be similar to that of concrete with natural aggregate. The properties of recycled aggregate concrete can be improved by strengthening the recycled coarse aggregate, and it is also found that the recycled coarse aggregate strengthened by grinding is superior to that soaked by chemical solution.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 2996-3012
Author(s):  
Hongyuan Zhou ◽  
Houzhan Zhou ◽  
Xiaojuan Wang ◽  
Wanlin Cao ◽  
Tianyi Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document