Enhancing the Engineering Properties of Black Cotton Soil by Using Magnesium Chloride

Author(s):  
Sukanya Sharma ◽  
Vijay Kumar ◽  
Ajay Bindlish
Author(s):  
Prerna Priya ◽  
Ran Vijay Singh

Expansive Black cotton clay soils are widely distributed worldwide, and are a significant damage to infrastructure and buildigs.It is a common practice around the world to stabilize black cotton soil using fly ash to improve the strength of stabilized sub- base and sub grade soil. Soil stabilization is the improvement of strength or bearing capacity of soil by controlled compaction, proportioning or addition of suitable admixtures or stabilizers. The Black cotton soils are extremely hard when dry, but lose its strength fully when in wet condition. In monsoon they guzzle water and swell and in summer they shrink on evaporation of water from there. Because of its high Swelling and shrinkage characteristics the black cotton soils has been a challenge to the highway engineers.So in this research paper fly ash has been used to improve the various strength properties of natural black cotton soil.The objective of this research paper is to improve the engineering properties of black cotton soil by adding different percentage of fly ash by the weight of soil and make it suitable for construction. A series of standard Proctor tests (for calculation of MDD and OMC) and California Bearing Ratio (C.B.R) tests are conducted on both raw Black cotton soil and mixed soil with different percentages of fly ash (5%, 10%, 20%, 30%) by weight. A comparison between properties of raw black cotton soil, black cotton soil mixed with fly ash are performed .It is found that the properties of black cotton soil mixed with fly ash are suitably enhanced.


Author(s):  
Pratiksha R. Patil

Abstract: Soil stabilization has become the more issue in construction activity. In this study we focus on improvement of soil by using Fly ash and ground granulated blast furnace slag (GGBS). In many villages there was demolition of houses due to flood situation and landslide so stabilization of soil is very important factor in this area. In these studies we use local Fly ash and Ground granulated blast furnace slag (GGBS) for stabilization of soil. Soil are generally stabilized to increase their strength and durability or to prevent soil erosion. The properties of soil vary a great deal at different places or in certain cases even at one place the success of soil stabilization depends on soil testing. Various methods are there to stabilize soil and the method should be verified in the lab with the soil material before applying it on the field. The various percentages of Fly ash and GGBS were mixed with soil sample to conduct soil test. Using fly ash reduces the plasticity index which has potential impact on engineering properties also GGBS has cementations property which acts as binding material for the soil. On addition of 15% Fly ash and 5% GGBS increase the strength of soil (according to IS2720:1985) it’s recommended for better result. Keywords: Stabilization of soil, Fly ash, GGBS, Black cotton soil, Soil test.


2018 ◽  
Vol 7 (2.1) ◽  
pp. 24
Author(s):  
Sajja Satish ◽  
Shyam Prakash Koganti ◽  
Kommineni Hemantha Raja ◽  
Kaza Raaga Sai

Expansive soil (Black cotton soil) is very weak and does not have enough stability for any type of construction work. To make the subgrade soil stable, by improving its engineering properties is very essential. In the present work, stabilization of subgrade soil by using Sand and Cement varying percentage of cement as 2%, 3%, 5% and constant percentage of sand by weight of soil, Rice Husk of 5%, 7%, 10%, and Lime is used to enhance the strength of subgrade soil. The purpose of this study is to determine the optimum dose of the stabilizer, which improves the strength and bearing capacity of soil less which is suitable for pavement structure. To evaluate the strength of soil, various tests have been performed such as Sieve analysis, Liquid limit, Plastic limit, Specific gravity, Compaction (OMC, MDD) and CBR test in the laboratory. The result shows that the use of the above materials in combination increases the California Bearing Ratio values (CBR). By using the CBR value the design of pavements to carry traffic in the range of 1 to 10 msa and 10 – 150 msa is calculated as per IRC: 37 – 2001.


2019 ◽  
Vol 8 (4) ◽  
pp. 1921-1926

Expansive soil implies low bearing capacity and high swelling property perhaps causes serious problems during construction includes low stability, non-uniform settlements and shear distribution. The soil stabilization is one such method to improve the process and it depends upon the soil condition and the nature of soil according to the desired requirements of footing. This study aims to increase the index and engineering properties of soil by addition of the natural fiber (sisal), lime and silica fume. Soil stabilization by lime involves the admixture in the form of calcium oxide or calcium hydroxide to the soil and silica fume as an industrial waste by product acts as a pore filling material. The project is economically viable because the stabilizing materials are easily available and less cost. This project is also analyzed by using the PLAXIS software.


Author(s):  
Karanbir Singh Randhawa ◽  
◽  
Rajiv Chauhan ◽  

The present study is the review of work carried out by various researchers on the improvement of engineering properties of expansive soils namely Indian Black Cotton Soil (BCS), after the addition of MSWI ash to the soil in varying proportions. The findings of study indicate that the optimum content of MSWI ash to be added to expansive soils for improvement in strength characteristics varies between 10% and 30% with best results at 25% of MSWI ash proportion. This content of MSWI ash increases the UCS of expansive black cotton soil from 28.8 kPa to 53.4 kPa and an increase in CBR value from 3.38% to 9.38%. The review suggests the use of MSWI ash in India keeping in view the enormous increase in volumes of municipal solid waste (MSW) due to fast urbanization in the country. The extensive use of such green technology will go a long way in reducing requirement of civil construction materials thereby lowering greenhouse emissions. Simultaneously, cost effectiveness in improvement of weak soils to be used in Highway subgrade civil engineering applications using MSWI ash will result is sustainable construction practices.


Sign in / Sign up

Export Citation Format

Share Document