Ionically Gelled Gellan Gum in Drug Delivery

Author(s):  
Pritish Kumar Panda ◽  
Amit Verma ◽  
Shivani Saraf ◽  
Ankita Tiwari ◽  
Sanjay K. Jain
Keyword(s):  
2016 ◽  
Vol 5 (3) ◽  
pp. 151-162
Author(s):  
Ranjeet Pareek ◽  
Shakuntla Verma ◽  
Viney Lather ◽  
Deepti Pandita

2018 ◽  
Vol 120 ◽  
pp. 1561-1571 ◽  
Author(s):  
Mukherjee Arjama ◽  
Sivaraj Mehnath ◽  
Mariappan Rajan ◽  
Murugaraj Jeyaraj

Pharmaceutics ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 187 ◽  
Author(s):  
Alessandra Adrover ◽  
Patrizia Paolicelli ◽  
Stefania Petralito ◽  
Laura Di Muzio ◽  
Jordan Trilli ◽  
...  

In this study, gellan gum (GG), a natural polysaccharide, was used to fabricate spherical porous beads suitable as sustained drug delivery systems for oral administration. GG was cross-linked with calcium ions to prepare polymeric beads. Rheological studies and preliminary experiments of beads preparation allowed to identify the GG and the CaCl2 concentrations suitable for obtaining stable and spherical particles. GG beads were formed, through ionotropic gelation technique, with and without the presence of the synthetic clay laponite. The resultant beads were analyzed for dimensions (before and after freeze-drying), morphological aspects and ability to swell in different media miming biological fluids, namely SGF (Simulated Gastric Fluid, HCl 0.1 M) and SIF (Simulated Intestinal Fluid, phosphate buffer, 0.044 M, pH 7.4). The swelling degree was lower in SGF than in SIF and further reduced in the presence of laponite. The GG and GG-layered silicate composite beads were loaded with two model drugs having different molecular weight, namely theophylline and cyanocobalamin (vitamin B12) and subjected to in-vitro release studies in SGF and SIF. The presence of laponite in the bead formulation increased the drug entrapment efficiency and slowed-down the release kinetics of both drugs in the gastric environment. A moving-boundary swelling model with “diffuse” glassy-rubbery interface was proposed in order to describe the swelling behavior of porous freeze-dried beads. Consistently with the swelling model adopted, two moving-boundary drug release models were developed to interpret release data from highly porous beads of different drugs: drug molecules, e.g., theophylline, that exhibit a typical Fickian behavior of release curves and drugs, such as vitamin B12, whose release curves are affected by the physical/chemical interaction of the drug with the polymer/clay complex. Theoretical results support the experimental observations, thus confirming that laponite may be an effective additive for fabricating sustained drug delivery systems.


Author(s):  
Insan Sunan Kurniawansyah ◽  
Taofik Rusdiana ◽  
Habibah A. Wahab ◽  
Anas Subarnas

In situ gel with ion activated system which occurs as triggered by a change in the ionic strength. Osmotic gradient is a factor that determines the rate of gelation on the surface of the gel. Polymers play an important role in drug delivery from their dosage forms. Polymeric in gelling systems provides longer drug release compared to conventional delivery systems. The use of biodegradable and biocompatible polymers for in situ gel formulation makes the drug delivery system acceptable and controlled. Thus the continuous and prolonged release of the drug, biocompatibility characteristics makes the dose gel form in situ reliable. Polymers that are used in ion activated in situ gelation can be various, such as gelrite gellan gum, alginates, deacetylated gellan gum, anionic polymers (carbopol), cationic polymer (chitosan), non-ionic polymers (HPMC, Methylcellulose), thiolated polymer (thiomers), carbomer (polymer used in ophthalmic), polycarbophil (polymer used in ophthalmic). This review is written based on the data or information obtained by using several search engines and several scientific journals, using the keywords in situ gel with polymers, ion activated the system, and limited search years in 2010 and above.


2020 ◽  
Vol 164 ◽  
pp. 2204-2214 ◽  
Author(s):  
Xiaomin Zhang ◽  
Yajin Pan ◽  
Shengke Li ◽  
Lian Xing ◽  
Shoukang Du ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 819
Author(s):  
Alessandra Adrover ◽  
Laura di Muzio ◽  
Jordan Trilli ◽  
Chiara Brandelli ◽  
Patrizia Paolicelli ◽  
...  

Polymeric oral thin films (OTFs) were prepared by the casting method, combining gellan gum (GG), a water-soluble polysaccharide, and glycerol (Gly) as a plasticizing agent. GG-Gly films were investigated as potential systems for buccal drug delivery using fluconazole (Class I of the Biopharmaceutical Classification System) as a model drug. At a low concentration of Gly drug precipitation occurred while, for higher concentrations of Gly, a significant deterioration of mucoadhesive and mechanical properties was observed. One possible way to overcome all these problems could be the addition of hydroxypropyl-β-cyclodextrin (HP-β-CD) to the GG-Gly formulation as a drug-precipitation inhibitor. In this work the effect of cyclodextrin addition on the mechanical, mucoadhesive, swelling and release properties of GG-Gly films was investigated. In-vitro drug release studies were carried out using the paddle type dissolution apparatus (USP II) and the millifluidic flow-through device (MFTD). A moving-boundary model for swelling dynamics and release in USP II is proposed to estimate the effective diffusivity of the solvent, HP-β-CD, fluconazole and complex fluconazole/HP-β-CD in the swelling film. Experimental results, supported by theoretical modeling, confirmed that gellan gum-low glycerol thin films including HP-β-CD represent a suitable formulation for fluconazole drug delivery. A sustained release was observed when GG-Gly film is loaded with a preformed complex fluconazole/HP-β-CD.


2018 ◽  
Vol 547 (1-2) ◽  
pp. 226-234 ◽  
Author(s):  
Patrizia Paolicelli ◽  
Stefania Petralito ◽  
Gabriele Varani ◽  
Martina Nardoni ◽  
Settimio Pacelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document