A Real Time Radio Spectrum Measurement Campaign for Machine Learning Based Spectrum Inference in Cognitive Radio Network

2021 ◽  
pp. 449-457
Author(s):  
Mudassar Naikwadi ◽  
Kishor Patil
2021 ◽  
pp. 63-71
Author(s):  
Vaishali S. Kulkarni ◽  
Tanuja S. Dhope(Shendkar) ◽  
Swagat Karve ◽  
Pranav Chippalkatti ◽  
Akshay Jadhav

2021 ◽  
Author(s):  
Mohamed Elalem

With the rapid development of wireless services and applications, the currently radio spectrum is becoming more crowded. How to accommodate more wireless services and applications within the limited radio spectrum becomes a big challenge faced by modern society. Cognitive radio (CR) is proposed as a promising technology to tackle this challenge by introducing secondary users (SUs) to opportunistically or concurrently access the spectrum allocated to primary users (PUs). Currently, there are two prevalent CR models: the spectrum sharing model and the opportunistic spectrum access model. In the spectrum sharing model, the SUs are allowed to coexist with the PUs as long as the interferences from SUs do not degrade the quality of service (QoS) of PUs to an unacceptable level. In the opportunistic spectrum access model, SUs are allowed to access the spectrum only if the PUs are detected to be inactive. These two models known as underlay and overlay schemes, respectively. This thesis studies a number of topics in CR networks under the framework of these two schemes. First, studied cognitive radio transmissions under QoS delay constraints. Initially, we focused on the concept: effective capacity for cognitive radio channels in order to identify the performance in the presence of QoS constraints. Both underlay and overlay schemes are studied taking into consideration the activity of primary users, and assuming the general case of channel fading as Gamma distribution. For this setting, we further proposed a selection criterion by which the cognitive radio network can choose the adequate mode of operation. Then, we studied the cognitive radio transmissions focusing on Rayleigh fading channel and assumed that no prior channel knowledge is available at the transmitter and the receiver. We investigated the performance of pilot-assisted transmission strategies. In particular, we analyzed the channel estimation using minimum mean-square-error (MMSE) estimation, and analyzed efficient resource allocation strategies. In both cases, power allocations and effective capacity optimization were obtained. Effective capacity and interference constraint were analyzed in both single-band and multi-band spectrum sensing settings. Finally, we studied optimal access probabilities for cognitive radio network using Markov model to achieve maximum throughput for both CR schemes.


2016 ◽  
Vol 16 (4) ◽  
pp. 87-97 ◽  
Author(s):  
Yongcheng Li ◽  
Hai Shen ◽  
Manxi Wang

Abstract Reasonable and effective allocation of cognitive radio spectrum resource according to user’s requirements is the key task of cognitive radio network. Cognitive radio spectrum allocation problem can be viewed as an optimization problem. This paper analyzes the application of bio-inspired intelligent algorithm in cognitive radio network spectrum allocation, and based on graph theory model of spectrum allocation, proposesaspectrum allocation algorithm based on autonomously evolutionary scheme. Three objective functions: Max-Min-Reward, Max-Sum- Reward and Max-Proportional-Fair are employed to evaluate the proposed algorithm capacity. The simulation result reveals that the proposed method can make the system user to obtain better network benefits and better embody the fairness between cognitive users. In the process of allocation, the proposed method was not restricted by user scale and the number of spectrums.


Author(s):  
Bhuvaneswari P. T. V. ◽  
Bino J.

Cognitive radio network (CRN) is an upcoming networking technology that can utilize both radio spectrum and wireless resources efficiently based on the information gathered from the past experience. There are two types of users in CRN, namely primary and secondary. PUs (PU) have the license to operate in certain spectrum band while the secondary (SU) or cognitive radio (CR) users do not have the license to operate in the desired band. However, they can opportunistically utilize the unused frequency bands. Spectrum sensing, spectrum management, spectrum sharing, and spectrum mobility are the four major functions of cognitive radio systems. The main objective of spectrum sensing is to provide better spectrum access to CR users, without causing any harmful interference to PUs. Sensing accuracy is considered as the most important factor to determine the performance of cognitive radio network. In this chapter, the challenges and requirement involved in spectrum sensing are detailed. Further, various spectrum sensing basic techniques are also discussed in detail.


2021 ◽  
Author(s):  
Mohamed Elalem

With the rapid development of wireless services and applications, the currently radio spectrum is becoming more crowded. How to accommodate more wireless services and applications within the limited radio spectrum becomes a big challenge faced by modern society. Cognitive radio (CR) is proposed as a promising technology to tackle this challenge by introducing secondary users (SUs) to opportunistically or concurrently access the spectrum allocated to primary users (PUs). Currently, there are two prevalent CR models: the spectrum sharing model and the opportunistic spectrum access model. In the spectrum sharing model, the SUs are allowed to coexist with the PUs as long as the interferences from SUs do not degrade the quality of service (QoS) of PUs to an unacceptable level. In the opportunistic spectrum access model, SUs are allowed to access the spectrum only if the PUs are detected to be inactive. These two models known as underlay and overlay schemes, respectively. This thesis studies a number of topics in CR networks under the framework of these two schemes. First, studied cognitive radio transmissions under QoS delay constraints. Initially, we focused on the concept: effective capacity for cognitive radio channels in order to identify the performance in the presence of QoS constraints. Both underlay and overlay schemes are studied taking into consideration the activity of primary users, and assuming the general case of channel fading as Gamma distribution. For this setting, we further proposed a selection criterion by which the cognitive radio network can choose the adequate mode of operation. Then, we studied the cognitive radio transmissions focusing on Rayleigh fading channel and assumed that no prior channel knowledge is available at the transmitter and the receiver. We investigated the performance of pilot-assisted transmission strategies. In particular, we analyzed the channel estimation using minimum mean-square-error (MMSE) estimation, and analyzed efficient resource allocation strategies. In both cases, power allocations and effective capacity optimization were obtained. Effective capacity and interference constraint were analyzed in both single-band and multi-band spectrum sensing settings. Finally, we studied optimal access probabilities for cognitive radio network using Markov model to achieve maximum throughput for both CR schemes.


Sign in / Sign up

Export Citation Format

Share Document