A Literature Review on Machine Learning Techniques and Strategies Applied to Stock Market Price Prediction

2021 ◽  
pp. 121-135
Author(s):  
Pankaj Rambhau Patil ◽  
Deepa Parasar ◽  
Shrikant Charhate
2021 ◽  
Vol 14 (1) ◽  
pp. 453-463
Author(s):  
Abdul Syukur ◽  
◽  
Deden Istiawan ◽  

LQ45 is an Indonesia Stock Exchange Index (ISX) incorporate of 45 companies that meet certain criteria to target investors for selecting certain stocks. The prediction of stock price direction in the financial world is a major issue. The implementation of machine learning and other algorithms for market price analysis and forecasting is a very promising field. Different types of classification algorithms were used to predict the stock market. However, when individual studies are considered separately there is no clear consensus that algorithms work best. In this research, a comparison framework is proposed, which aims to benchmark the performance of a wide range of classification models and use them to predict the LQ45 index. The data in this research contains the transaction level and capitalization size are obtained from the Indonesian Stock Exchange (ISX). For analysis purposes, we set out 10 classifiers that can be used to build classification models and test their performance in the LQ45 dataset. The performance criterion chosen to measure this effect is accuracy, recall, and precision. The results showed that the random forest algorithm had the best performance for predicting the LQ45 index. Whilst the classification and regression trees, C4.5, support vector machine, and logistic regression algorithms also perform well. Besides, the models based on traditional statisticalbased learners that are Naïve Bayes and linear discriminant analysis seem to underperform for predicting the LQ45 index. These results are not only beneficial to enrichment the machine learning techniques literature but also have a significant influence on the stock market prediction in terms of the ability to predict the LQ45 index.


2021 ◽  
Author(s):  
Reshma R ◽  
Usha Naidu S ◽  
Sathiyavathi V ◽  
SaiRamesh L

Predicting the future in all the areas using machine learning techniques was the recent research in the current scenario. Stock market is one among them which needs the prediction future market to invest in the new enterprise or to sell their existing shares to get profit. This need the efficient prediction technique which studies the previous exchanges of stock market and gives the future prediction based on that. This article proposed the prediction system of stock market price based on the exchange takes place in previous scenario. The system studies the diversing effect of market price of product in a particular time gap and analyze its future trend whether it’s loss or gain. During the system of thinking about diverse strategies and variables that should be taken into account, we observed out that strategies like random forest, Support vector machine and regression algorithm. Support vector regression is a beneficial and effective gadget gaining knowledge of approach to apprehend sample of time collection dataset. The data collected for the four years duration which was accumulated to get the expecting prices of the share of the firm. It can produce true prediction end result if the fee of essential parameters may be decided properly. It has been located that the guide vector regression version with RBF kernel indicates higher overall performance while in comparison with different models.


Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 170 ◽  
Author(s):  
Zhixi Li ◽  
Vincent Tam

Momentum and reversal effects are important phenomena in stock markets. In academia, relevant studies have been conducted for years. Researchers have attempted to analyze these phenomena using statistical methods and to give some plausible explanations. However, those explanations are sometimes unconvincing. Furthermore, it is very difficult to transfer the findings of these studies to real-world investment trading strategies due to the lack of predictive ability. This paper represents the first attempt to adopt machine learning techniques for investigating the momentum and reversal effects occurring in any stock market. In the study, various machine learning techniques, including the Decision Tree (DT), Support Vector Machine (SVM), Multilayer Perceptron Neural Network (MLP), and Long Short-Term Memory Neural Network (LSTM) were explored and compared carefully. Several models built on these machine learning approaches were used to predict the momentum or reversal effect on the stock market of mainland China, thus allowing investors to build corresponding trading strategies. The experimental results demonstrated that these machine learning approaches, especially the SVM, are beneficial for capturing the relevant momentum and reversal effects, and possibly building profitable trading strategies. Moreover, we propose the corresponding trading strategies in terms of market states to acquire the best investment returns.


2019 ◽  
Vol 124 ◽  
pp. 226-251 ◽  
Author(s):  
Bruno Miranda Henrique ◽  
Vinicius Amorim Sobreiro ◽  
Herbert Kimura

2020 ◽  
Vol 13 (1) ◽  
pp. 130-149
Author(s):  
Puneet Misra ◽  
Siddharth Chaurasia

Stock market movements are affected by numerous factors making it one of the most challenging problems for forecasting. This article attempts to predict the direction of movement of stock and stock indices. The study uses three classifiers - Artificial Neural Network, Random Forest and Support Vector Machine with four different representation of inputs. First representation uses raw data (open, high, low, close and volume), The second uses ten features in the form of technical indicators generated by use of technical analysis. The third and fourth portrayal presents two different ways of converting the indicator data into discrete trend data. Experimental results suggest that for raw data support vector machine provides the best results. For other representations, there is no clear winner regarding models applied, but portrayal of data by the proposed approach gave best overall results for all the models and financial series. Consistency of the results highlight the importance of feature generation and right representation of dataset to machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document