IOT with Smart Systems

2022 ◽  
Keyword(s):  
2020 ◽  
Author(s):  
Alexis Wolfel ◽  
Cecilia Inés Alvarez Igarzabal ◽  
Marcelo Ricardo Romero

<p>Design of materials with novel sensitivities and smart behaviour is important for the development of smart systems with automated responsiveness. We have recently reported the synthesis of hydrogels, cross-linked by <i>N,N'</i>-diallyltartardiamide (DAT). The covalent DAT-crosslinking points have vicinal diols which can be easily cleaved with periodate, generating valuable a-oxo-aldehyde functional groups, useful for further chemical modification. Based on those findings, we envisioned that a self-healable hydrogel could be obtained by incorporation of primary amino functional groups, from <a>2-aminoethyl methacrylate </a>hydrochloride (AEMA), coexisting with DAT into the same network. The a-oxo-aldehyde groups generated after the reaction with periodate would arise in the immediate environment of amine groups to form imine cross-links. For this purpose, DAT-crosslinked hydrogels were synthesized and carefully characterized. The cleavage of DAT-crosslinks with periodate promoted changes in the mechanical and swelling properties of the materials. As expected, a self-healing behavior was observed, based on the spontaneous formation of imine covalent bonds. In addition, we surprisingly found a combination of fast vicinal diols cleavage and a low speed self-crosslinking reaction by imine formation. Consequently, it was found a time-window in which a periodate-treated polymer was obtained in a transient liquid state, which can be exploited to choose the final shape of the material, before automated gelling. The singular properties attained on these hydrogels could be useful for developing sensors, actuators, among other smart systems.</p>


Author(s):  
Imre Horváth ◽  
Yong Zeng ◽  
Ying Liu ◽  
Joshua Summers
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6746
Author(s):  
Jong-Hyun Kim ◽  
Yong-Gil Lee

This study investigated the technological developments in the shale petroleum industry by analyzing patent data using a network of technological indices. The technological developments were promoted by the beginning of the shale industry, and after the first five years, it showed a more complex development pattern with the convergence of critical technologies. This paper described progress in the shale petroleum technologies as changes in relatedness networks of technological components. The relatedness represents degree of convergence between technological components, and betweenness centrality of network represents priority of technological components. In the results, the progress of the critical technologies such as directional drilling, increasing permeability, and smart systems, were actively carried out from 2012 to 2016. Especially, unconverged technology of increasing permeability and the converged technology of directional drilling and smart system has been intensively developed. Some technological components of the critical technologies are more significant in the form of converged technology.


2021 ◽  
Vol 18 (4) ◽  
pp. 1-27
Author(s):  
Yasir Mahmood Qureshi ◽  
William Andrew Simon ◽  
Marina Zapater ◽  
Katzalin Olcoz ◽  
David Atienza

The increasing adoption of smart systems in our daily life has led to the development of new applications with varying performance and energy constraints, and suitable computing architectures need to be developed for these new applications. In this article, we present gem5-X, a system-level simulation framework, based on gem-5, for architectural exploration of heterogeneous many-core systems. To demonstrate the capabilities of gem5-X, real-time video analytics is used as a case-study. It is composed of two kernels, namely, video encoding and image classification using convolutional neural networks (CNNs). First, we explore through gem5-X the benefits of latest 3D high bandwidth memory (HBM2) in different architectural configurations. Then, using a two-step exploration methodology, we develop a new optimized clustered-heterogeneous architecture with HBM2 in gem5-X for video analytics application. In this proposed clustered-heterogeneous architecture, ARMv8 in-order cluster with in-cache computing engine executes the video encoding kernel, giving 20% performance and 54% energy benefits compared to baseline ARM in-order and Out-of-Order systems, respectively. Furthermore, thanks to gem5-X, we conclude that ARM Out-of-Order clusters with HBM2 are the best choice to run visual recognition using CNNs, as they outperform DDR4-based system by up to 30% both in terms of performance and energy savings.


2013 ◽  
Vol 52 (1) ◽  
pp. 1041-1046
Author(s):  
T. Gessner ◽  
M. Vogel ◽  
J. Nestler ◽  
K. Hiller ◽  
S. Kurth ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document