Hierarchal Communication Architecture for Multi-level Energy Harvesting Support in Underwater Sensor Network

2021 ◽  
pp. 585-595
Author(s):  
Anuradha ◽  
Amit Kumar Bindal ◽  
Devendra Prasad ◽  
Afshan Hassan
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yin Wu ◽  
Bowen Li ◽  
Yongjun Zhu ◽  
Wenbo Liu

The purpose of this paper is to represent a living-tree biological energy powered wireless sensor system and introduce a novel energy aware MAC protocol based on remaining energy level, energy harvesting status, and application requirements. Conventional wireless sensor network (WSN) cannot have an infinite lifetime without battery recharge or replacement. Energy harvesting (EH), from environmental energy sources, is a promising technology to provide sustainable powering for WSN. In this paper, a sensor network system has been developed which uses living-tree bioenergy as harvesting resource and super capacitor as energy storage. Moreover, by analyzing the power recharging, task arrangement, and energy consumption rate, a novel duty cycle-based energy-neutral MAC protocol is proposed. It dynamically optimizes each wireless sensor node’s duty cycle to create a balanced, efficient, and continuous network. The scheme is implemented in a plant surface-mounted bioenergy power wireless sensor node system called PBN, which aims to monitoring the plant’s growth parameters. The results show that the proposed MAC protocol can provide sustainable and reliable data transmission under ultralow and dynamic power inputs; it also significantly improves the latency and packet loss probability compared with other MAC protocols for EH-WSN.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2540 ◽  
Author(s):  
Hao Wu ◽  
Yong Chen

A cognitive sensor network with energy harvesting (EH-CSN) is a promising paradigm to address the issues both in spectrum efficiency and in energy efficiency. The cognitive sensors (CSs) equipped with energy harvesting devices are assumed to operate in a harvesting-sensing-transmission mode and permitted to access the idle licensed frequency bands without causing any harmful jamming to the primary user. By identifying the time fractions of harvesting, sensing, and transmission, we can discuss some design considerations for the EH-CSN. In the meantime, considering the possibility that the primary user may reoccupy the idle channel during the CS’s data transmission duration, we formulate an optimization problem to maximize the average throughput of EH-CSN under a collision constraint and an energy constraint. After deriving the lower and upper bounds of the time fraction for energy harvesting, the uniqueness and existence of the optimal time fraction set have been proved. Finally, our theoretical analysis is also verified through numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document