Combustion Analysis of a Diesel Engine Run on Non-conventional Fuel at Different Nozzle Injection Pressure

2021 ◽  
pp. 109-118
Author(s):  
Abhishek Sharma ◽  
S. Murugan
2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ikhtedar Husain Rizvi ◽  
Rajesh Gupta

AbstractTightening noose on engine emission norms compelled manufacturers globally to design engines with low emission specially NOx and soot without compromising their performance. Amongst various parameters, shape of piston bowls, injection pressure and nozzle diameter are known to have significant influence over the thermal performance and emission emanating from the engine. This paper investigates the combined effect of fuel injection parameters such as pressure at which fuel is injected and the injection nozzle size along with shape of piston bowl on engine emission and performance. Numerical simulation is carried out using one cylinder naturally aspirated diesel engine using AVL FIRE commercial code. Three geometries of piston bowls with different tumble and swirl characteristics are considered while maintaining the volume of piston bowl, compression ratio, engine speed and fuel injected mass constant along with equal number of variations for injection nozzle size and pressures for this analysis. The investigation corroborates that high swirl and large turbulence kinetic energy (TKE) are crucial for better combustion. TKE and equivalence ratio also increased as the injection pressure increases during the injection period, hence, enhances combustion and reduces soot formation. Increase in nozzle diameter produces higher TKE and equivalence ratio, while CO and soot emission are found to be decreasing and NOx formation to be increasing. Further, optimization is carried out for twenty-seven cases created by combining fuel injection parameters and piston bowl geometries. The case D2H1P1 (H1 = 0.2 mm, P1 = 200 bar) found to be an optimum case because of its lowest emission level with slightly better performance.


2018 ◽  
Vol 15 (5) ◽  
pp. 562-566
Author(s):  
Vijaya K. ◽  
Shailesh Palaparty ◽  
Raghavan Srinivasa ◽  
Ravi Kumar Puli

Purpose Investigations are carried out with the aim of improving performance of a diesel engine with the design modification on piston crown to stimulate the uniform combustion by inducing turbulence in the incoming charge. Design/methodology/approach A stirrer is introduced at the top of the piston so as to inculcate more turbulence to the incoming charge by improving the rate of fuel vaporization. Whirling motion is created in the combustible mixture by providing rotating blades on the cavity/bowl of the reciprocating piston head. By putting a simple link mechanism, the oscillatory motion of connecting rod will rotate the blade by an angle of 60°. Findings The investigations are carried out with and without swirl piston at 17.5 compression ratio and 200 bar injection pressure by varying injection timings. Originality/value Finally, the result shows that by using the modified piston, nearly 3 per cent of efficiency increased and 31 per cent of NOx emissions are reduced compared to that of a normal piston with 80 per cent load at standard injection timing.


Author(s):  
M P Ashok ◽  
C G Saravanan

Diesel engines are employed as the major propulsion power sources because of their simple, robust structure and high fuel economy. It is expected that diesel engines will be widely used in the foreseeable future. However, an increase in the use of diesel engines causes a shortage of fossil fuel and results in a greater degree of pollution. To regulate the above, identifying an alternative fuel to the diesel engine with less pollution is essential. Ethanol–diesel emulsion is one such method, used for the preparation of an alternative fuel for the diesel engine. Experimental investigations were carried out to compare the performance of diesel fuel with different ratios 50D: 50E (50 per cent diesel No: 2: 50 per cent ethanol –100 per cent proof) and 60D: 40E emulsified fuels. In the next phase, experiments were conducted for the selected emulsified fuel ratio 50D: 50E for different high injection pressures and the results are compared. The results show that for the emulsified fuel ratios, there is a marginal increase in torque, power, NO x, emissions, and decreasing values of carbon monoxide (CO), sulphur dioxide (SO2) emissions at the maximum speed conditions, compared with diesel fuel. Also, it is found that an increase in injection pressure of the engine running with emulsified fuel decreases CO and smoke emissions especially between 1500 to 2000 r/min with respect to the diesel fuel.


2014 ◽  
Vol 592-594 ◽  
pp. 1632-1637
Author(s):  
Ramalingam Senthil ◽  
C. Paramasivam ◽  
Rajendran Silambarasan

Nerium methyl ester, an esterified biofuel, has an excellent cetane number and a reasonable calorific value. It closely resembles the behaviour of diesel. However, being a fuel of different origin, the standard design limits of a diesel engine is not suitable for Nerium methyl ester (NME). Therefore, in this work, a set of design and operational parameters are studied to find out the optimum performance of Nerium methyl ester run diesel engine. This work targets at finding the effects of the engine design parameter viz. fuel injection pressure (IP) on the performance with regard to specific fuel consumption (SFC), brake thermal efficiency (BTHE) and emissions of CO, CO2, HC, NOxwith N20 as fuel. Comparison of performance and emission was done for different values of injection pressure to find best possible condition for operating engine with NME. For small sized direct injection constant speed engines used for agricultural applications, the optimum injection pressure was found as 240bar.Methyl esters from Nerium, with properties close to diesel; show better performance and emission characteristics. Hence Nerium (N20) blend can be used in existing diesel engines without compromising the engine performance. Diesel (25%) thus saved will greatly help the interests of railways in meeting the demand for fuel,as diesel trains are operated at maximum load condition.


Sign in / Sign up

Export Citation Format

Share Document