scholarly journals A Review of Motion Planning Algorithms for Robotic Arm Systems

Author(s):  
Shuai Liu ◽  
Pengcheng Liu
2016 ◽  
Vol 23 (4) ◽  
pp. 107-117 ◽  
Author(s):  
J.J.M. Lunenburg ◽  
S.A.M. Coenen ◽  
G.J.L. Naus ◽  
M.J.G. van de Molengraft ◽  
M. Steinbuch

2019 ◽  
Vol 16 (04) ◽  
pp. 1950012 ◽  
Author(s):  
Mircea Hulea ◽  
Adrian Burlacu ◽  
Constantin-Florin Caruntu

This paper details an intelligent motion planning and control approach for a one-degree of freedom joint of a robotic arm that can be used to implement anthropomorphic robotic hands. This intelligent control method is based on bio-inspired electronic neural networks and contractile artificial muscles implemented with shape memory alloy (SMA) actuators. The spiking neural network (SNN) includes several excitatory neurons that naturally determine the contraction force of the actuators, and unevenly distributed inhibitory neurons that regulate the excitatory activity. To validate the proposed concept, the experiments highlight the motion planning and control of a single-joint robotic arm. The results show that the electronic neural network is able to intelligently activate motion and hold with high precision the mobile link to the target positions even if the arm is slightly loaded. These results are encouraging for the development of improved biologically plausible neural structures that are able to control simultaneously multiple muscles.


Author(s):  
Sam Ade Jacobs ◽  
Kasra Manavi ◽  
Juan Burgos ◽  
Jory Denny ◽  
Shawna Thomas ◽  
...  

Author(s):  
Lu Lei ◽  
Jiong Zhang ◽  
Xiaoqing Tian ◽  
Jiang Han ◽  
Hao Wang

Abstract This paper develops a tool path optimization method for robot surface machining by sampling-based motion planning algorithms. In the surface machining process, the tool-tip position needs to strictly follow the tool path curve and the posture of the tool axis should be limited in a certain range. But the industrial robot has at least six degrees of freedom (Dof) and has redundant Dofs for surface machining. Therefore, the tool motion of surface machining can be optimized using the redundant Dofs considering the tool path constraints and limits of the tool axis orientation. Due to the complexity of the problem, the sampling-based motion planning method has been chosen to find the solution, which randomly explores the configuration space of the robot and generates a discrete path of valid robot state. During the solving process, the joint space of the robot is chosen as the configuration space of the problem and the constraints for the tool-tip following requirements are in the operation space. Combined with general collision checking, the limited region of the tool axis vector is used to verify the state's validity of the configuration space. In the optimization process, the sum of path length of each joint of the robot is set as the optimization objective. The algorithm is developed based on the open motion planning library (OMPL) which contains the state-of-the-art sampling-based motion planners. Finally, two examples are used to demonstrate the effectiveness and optimality of the method.


2020 ◽  
Vol 102 (3) ◽  
pp. 506-516
Author(s):  
CESAR A. IPANAQUE ZAPATA ◽  
JESÚS GONZÁLEZ

In robotics, a topological theory of motion planning was initiated by M. Farber. We present optimal motion planning algorithms which can be used in designing practical systems controlling objects moving in Euclidean space without collisions between them and avoiding obstacles. Furthermore, we present the multi-tasking version of the algorithms.


Sign in / Sign up

Export Citation Format

Share Document