dynamic motion planning
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 2)

2020 ◽  
Vol 17 (1) ◽  
pp. 172988141989322 ◽  
Author(s):  
Hao Ren ◽  
Wanfeng Shang ◽  
Niannian Li ◽  
Xinyu Wu

In order to meet requirements of diverse activities of exoskeleton robot in practical application, a dynamic motion planning system is proposed using a fast parameterized gait planning method in this article. This method can plan the required gait data by adaptively adjusting very few parameters according to different application requirements. The inverted pendulum model is used to ensure the sagittal stability of the robot in the planning process. And this article specifies the end location of robot and iterates the associated joint angles by inverse kinematics. The gait trajectories generated by the proposed method are applied to the lightweight lower-limb exoskeleton robot. The results demonstrate that the trajectories of gait can be online generated smoothly and correctly, meanwhile every variable step can be satisfied as expected.


In this article, the Minimum Fuzzy Rule-Based (MFRB) sensor-actuator controller has designed for dynamic motion planning of a differential drive wheeled robot among the moving, non-moving obstacles and goal in two-dimensional environments. The ring of ultrasonic sensors and infrared sensors have been attached on the front side, left side, and right side of the wheeled robot, which detects the moving obstacles, as well as non-moving obstacles in any environment. This proposed MFRB sensor-actuator controller helps the wheeled robot to move safely in a different scenario. The onboard sensor interpretation data are fed as input to the MFRB controller, and the MFRB controller provides the Pulse Width Modulation (PWM) based wheel velocity commands to both the left and right motors of a wheeled robot. In the numerical simulation and experiment, we have taken one condition that the speed of wheels of the differential drive wheeled robot is at least more than or equal to the rate of the moving obstacles and the moving goal. The numerical simulations are performed through a MATLAB graphical user interface (GUI), and we have used the differential drive wheeled robot to conduct experiments. The presented numerical simulation and experimental results illustrate that the MFRB controller operated wheeled robot has successfully avoided the stationary and nonstationary obstacles in various scenarios.


2019 ◽  
Vol 16 (5) ◽  
pp. 172988141987323
Author(s):  
Lizheng Pan ◽  
Aiguo Song ◽  
Suolin Duan ◽  
Xianchuan Shi

The motion rehabilitation training robot is developed to help patients with motion dysfunction recover their motor function by providing a large amount of repetitive robot-aided exercise. To achieve stable and smooth robot-aided exercises for stroke patients, a motion control method with a novel dynamic motion planning strategy is proposed. The physical state of the training limb is assessed real time during the rehabilitation exercises. The dynamic motion planning strategy is developed by employing a suitable interpolation method dynamically corresponding to the physical state of the training limb to plan a trajectory tracking system that completely utilizes different interpolation characteristics to manage the movement in accordance with the time-varying physical state of the training limb. Concurrently, a position-based impedance control is adopted to achieve compliant movement. Functional (quantitative and qualitative) and clinical experiments are conducted on a four-degree-of-freedom whole-arm manipulator upper limb rehabilitation robot to verify the effectiveness of the control method designed with the dynamic motion planning strategy. The results indicate that the proposed control strategy can exhibit better performances in terms of the stability and smoothness.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 957 ◽  
Author(s):  
Alessio Sozzi ◽  
Marcello Bonfè ◽  
Saverio Farsoni ◽  
Giacomo De Rossi ◽  
Riccardo Muradore

The paper addresses the problem of the generation of collision-free trajectories for a robotic manipulator, operating in a scenario in which obstacles may be moving at non-negligible velocities. In particular, the paper aims to present a trajectory generation solution that is fully executable in real-time and that can reactively adapt to both dynamic changes of the environment and fast reconfiguration of the robotic task. The proposed motion planner extends the method based on a dynamical system to cope with the peculiar kinematics of surgical robots for laparoscopic operations, the mechanical constraint being enforced by the fixed point of insertion into the abdomen of the patient the most challenging aspect. The paper includes a validation of the trajectory generator in both simulated and experimental scenarios.


Sign in / Sign up

Export Citation Format

Share Document