A Gridless Joint DOA and Range Estimation Method for FMCW MIMO Radar

Author(s):  
Jingyu Cong ◽  
Tao Lu ◽  
Zhang Bin ◽  
Xiaoli Jing ◽  
Xianpeng Wang
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Tengxian Xu ◽  
Yongqin Yang ◽  
Mengxing Huang ◽  
Han Wang ◽  
Di Wu ◽  
...  

In the paper, joint angle and range estimation issue for monostatic frequency diverse array multiple-input multiple-output (FDA-MIMO) is proposed, and a tensor-based framework is addressed to solve it. The proposed method exploits the multidimensional structure of matched filters in FDA-MIMO radar. Firstly, stack the received data to form a third-order tensor so that the multidimensional structure information of the received data can be acquired. Then, the steering matrices contain the angle and rang information are estimated by using the parallel factor (PARAFAC) decomposition. Finally, the angle and range are achieved by utilizing the phase characteristic of the steering matrices. Due to exploiting the multidimensional structure of the received data to further suppress the effect of noise, the proposed method performs better in angle and range estimation than the existing algorithms based on ESPRIT, simulation results can prove the proposed method’s effectiveness.


2021 ◽  
Vol 13 (10) ◽  
pp. 1956
Author(s):  
Jingyu Cong ◽  
Xianpeng Wang ◽  
Xiang Lan ◽  
Mengxing Huang ◽  
Liangtian Wan

The traditional frequency-modulated continuous wave (FMCW) multiple-input multiple-output (MIMO) radar two-dimensional (2D) super-resolution (SR) estimation algorithm for target localization has high computational complexity, which runs counter to the increasing demand for real-time radar imaging. In this paper, a fast joint direction-of-arrival (DOA) and range estimation framework for target localization is proposed; it utilizes a very deep super-resolution (VDSR) neural network (NN) framework to accelerate the imaging process while ensuring estimation accuracy. Firstly, we propose a fast low-resolution imaging algorithm based on the Nystrom method. The approximate signal subspace matrix is obtained from partial data, and low-resolution imaging is performed on a low-density grid. Then, the bicubic interpolation algorithm is used to expand the low-resolution image to the desired dimensions. Next, the deep SR network is used to obtain the high-resolution image, and the final joint DOA and range estimation is achieved based on the reconstructed image. Simulations and experiments were carried out to validate the computational efficiency and effectiveness of the proposed framework.


Author(s):  
Anteneh Ayanso ◽  
Paulo B. Goes ◽  
Kumar Mehta

Relational databases have increasingly become the basis for a wide range of applications that require efficient methods for exploratory search and retrieval. Top-k retrieval addresses this need and involves finding a limited number of records whose attribute values are the closest to those specified in a query. One of the approaches in the recent literature is query-mapping which deals with converting top-k queries into equivalent range queries that relational database management systems (RDBMSs) normally support. This approach combines the advantages of simplicity as well as practicality by avoiding the need for modifications to the query engine, or specialized data structures and indexing techniques to handle top-k queries separately. This paper reviews existing query-mapping techniques in the literature and presents a range query estimation method based on cost modeling. Experiments on real world and synthetic data sets show that the cost-based range estimation method performs at least as well as prior methods and avoids the need to calibrate workloads on specific database contents.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050003
Author(s):  
Wenjie Peng ◽  
Kaiqi Fu ◽  
Wei Zhang ◽  
Yanlu Xie ◽  
Jinsong Zhang

Pitch-range estimation from brief speech segments could bring benefits to many tasks like automatic speech recognition and speaker recognition. To estimate pitch range, previous studies have proposed to utilize deep-learning-based models with spectrum information as input. They demonstrated that such method works and could still achieve reliable estimation results when the speech segment is as brief as 300 ms. In this study, we evaluated the robustness of this method. We take the following scenarios into account: (1) a large number of training speakers; (2) different language backgrounds; and (3) monosyllabic utterances with different tones. Experimental results showed that: (1) The use of a large number of training speakers improved the estimation accuracies. (2) The mean absolute percentage error (MAPE) rate evaluated on the L2 speakers is similar to that on the native speakers. (3) Different tonal information will affect the LSTM-based model, but this influence is limited compared to the baseline method which calculates pitch-range targets from the distribution of [Formula: see text]0 values. These experimental results verified the efficiency of the LSTM-based pitch-range estimation method.


Sign in / Sign up

Export Citation Format

Share Document