scholarly journals Tensor-Based Angle and Range Estimation Method in Monostatic FDA-MIMO Radar

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Tengxian Xu ◽  
Yongqin Yang ◽  
Mengxing Huang ◽  
Han Wang ◽  
Di Wu ◽  
...  

In the paper, joint angle and range estimation issue for monostatic frequency diverse array multiple-input multiple-output (FDA-MIMO) is proposed, and a tensor-based framework is addressed to solve it. The proposed method exploits the multidimensional structure of matched filters in FDA-MIMO radar. Firstly, stack the received data to form a third-order tensor so that the multidimensional structure information of the received data can be acquired. Then, the steering matrices contain the angle and rang information are estimated by using the parallel factor (PARAFAC) decomposition. Finally, the angle and range are achieved by utilizing the phase characteristic of the steering matrices. Due to exploiting the multidimensional structure of the received data to further suppress the effect of noise, the proposed method performs better in angle and range estimation than the existing algorithms based on ESPRIT, simulation results can prove the proposed method’s effectiveness.

2018 ◽  
Vol 173 ◽  
pp. 02015
Author(s):  
Binbin Li ◽  
Weixiong Bai ◽  
Qin Zhang ◽  
Guimei Zheng ◽  
Mingliang Zhang ◽  
...  

Joint DOA-range-polarization estimation with a novel radar system, i.e., spatially separated polarization sensitive random frequency diverse array based on multiple-input multiple-output (SS-PSRFDA-MIMO) radar, is discussed. The proposed array can obtain not only unambiguous range estimation but also polarization parameter estimation. Firstly, the signal model of SS-PSRFDA-MIMO radar is constructed. Secondly, dimension reduction multiple signal classification (DR-MUSIC) algorithm is extended to parameter estimation with the proposed array. Last, simulations demonstrate the proposed algorithm is effective to estimate parameter, and the performance of proposed array is better than that of polarization sensitive frequency diverse array based on MIMO radar. It is worth mentioning that the Cramér–Rao lower bound (CRLB) of range estimation with the proposed array is much lower than that of PSFDA-MIMO radar.


2021 ◽  
Vol 13 (15) ◽  
pp. 2964
Author(s):  
Fangqing Wen ◽  
Junpeng Shi ◽  
Xinhai Wang ◽  
Lin Wang

Ideal transmitting and receiving (Tx/Rx) array response is always desirable in multiple-input multiple-output (MIMO) radar. In practice, nevertheless, Tx/Rx arrays may be susceptible to unknown gain-phase errors (GPE) and yield seriously decreased positioning accuracy. This paper focuses on the direction-of-departure (DOD) and direction-of-arrival (DOA) problem in bistatic MIMO radar with unknown gain-phase errors (GPE). A novel parallel factor (PARAFAC) estimator is proposed. The factor matrices containing DOD and DOA are firstly obtained via PARAFAC decomposition. One DOD-DOA pair estimation is then accomplished from the spectrum searching. Thereafter, the remainder DOD and DOA are achieved by the least squares technique with the previous estimated angle pair. The proposed estimator is analyzed in detail. It only requires one instrumental Tx/Rx sensor, and it outperforms the state-of-the-art algorithms. Numerical simulations verify the theoretical advantages.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Guang-ming Li ◽  
Qun Zhang ◽  
Qi-yong Liu ◽  
Jia Liang ◽  
Dan Wang ◽  
...  

Frequency diverse array (FDA) has attracted much attention in recent years due to its range-angle-dependent beampattern. Multiple-input multiple-output (MIMO) radar can offer waveform diversity to increase the virtual aperture length for azimuth coherent focus processing in radar imaging. Combining the advantages of FDA and MIMO radar, FDA-MIMO radar can steer multiple beams to different targets in the same line of sight (LOS) of radar with different waveforms. In this paper, an improved FDA model with the logistic map is proposed to get the aperiodic and range-angle uncoupling beampattern. Based on the proposed FDA, combining the FDA-MIMO radar, the waveform and chirp rate jitter techniques are adopted to mainlobe jamming suppression. Simulation results show the effectiveness of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Changlin Zhou ◽  
Chunyang Wang ◽  
Jian Gong ◽  
Ming Tan ◽  
Yingjian Zhao ◽  
...  

Since the beampattern has the characteristics of range-angle dependence, frequency diverse array multiple-input multiple-output (FDA-MIMO) radar has a good application prospect. There have been many studies to improve the performance of the beampattern by optimizing the frequency offset. However, on the basis of fully understanding the time parameters, the relationship between the array element frequency offset and the beampattern performance still needs to be clarified. Based on a new FDA-MIMO radar framework, this paper presents an analytical solution of the beampattern, which removes the influence of the time parameter. Taking the minimum main lobe as the objective function, an analytical method for solving a better frequency offset is given. Then, a method of using the window function was proposed to reduce the high side lobes of the range dimension. Comparing with the existing FDA radar beampattern design methods, it can achieve a more focusing beampattern. The simulation results verify the correctness of the theory.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ling Huang ◽  
Kuandong Gao ◽  
Zhiming He ◽  
Jingye Cai

Frequency diverse array (FDA) has its unique advantage in realizing low probability of intercept (LPI) technology for its dependent beam pattern. In this paper, we proposed a cognitive radar based on the frequency diverse array multiple-input multiple-output (MIMO). To implement LPI of FDA MIMO transmit signals, a scheme for array weighting design is proposed, which is to minimize the energy of the target location and maximize the energy of the receiver. This is based on the range dependent characteristics of the frequency diverse array transmit beam pattern. To realize the objective problem, the algorithm is proposed as follows: the second-order nonconvex optimization problem is converted into a convex problem and solved by the bisection method and convex optimization. To get the information of target, the FDA MIMO radar is proposed to estimate the target parameters. Simulation results show that the proposed approach is effective in decreasing the detection probability of radar with lossless detection performance of the receive signal.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2453 ◽  
Author(s):  
Guangyong Zheng ◽  
Siqi Na ◽  
Tianyao Huang ◽  
Lulu Wang

Distributed multiple input multiple output (MIMO) radar has attracted much attention for its improved detection and estimation performance as well as enhanced electronic counter-counter measures (ECCM) ability. To protect the target from being detected and tracked by such radar, we consider a barrage jamming strategy towards a distributed MIMO. We first derive the Cramer–Rao bound (CRB) of target parameters estimation using a distributed MIMO under barrage jamming environments. We then set maximizing the CRB as the criterion for jamming resource allocation, aiming at degrading the accuracy of target parameters estimation. Due to the non-convexity of the CRB maximizing problem, particle swarm optimization is used to solve the problem. Simulation results demonstrate the advantages of the proposed strategy over traditional jamming methods.


2013 ◽  
Vol 443 ◽  
pp. 649-652
Author(s):  
Yan Ling Luo

MIMO radar (Multiple input multiple output radar) is a hot topic which gets lots of attention from researchers all around the world recently. It can achieve better detection performance than conventional phased radar. In this paper, the MIMO radar signal model is studied, and then the concept of MIMO radar is applied into SAR. The technique is employed to detect the oil spill in sea. At last, some conclusion is drawn. And some item for future research in presented also.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Bin Sun ◽  
Haowen Chen ◽  
Xizhang Wei ◽  
Xiang Li

The target localization in distributed multiple-input multiple-output (MIMO) radar is a problem of great interest. This problem becomes more complicated for the case of multitarget where the measurement should be associated with the correct target. Sparse representation has been demonstrated to be a powerful framework for direct position determination (DPD) algorithms which avoid the association process. In this paper, we explore a novel sparsity-based DPD method to locate multiple targets using distributed MIMO radar. Since the sparse representation coefficients exhibit block sparsity, we use a block sparse Bayesian learning (BSBL) method to estimate the locations of multitarget, which has many advantages over existing block sparse model based algorithms. Experimental results illustrate that DPD using BSBL can achieve better localization accuracy and higher robustness against block coherence and compressed sensing (CS) than popular algorithms in most cases especially for dense targets case.


Sign in / Sign up

Export Citation Format

Share Document