Storage Mechanism for Heterogeneous Streamed Sensor Data

Author(s):  
J. RubyDinakar ◽  
S. Vagdevi
Author(s):  
K.Makanyadevi, Et. al.

In recent years there are many researchers conducted regarding with cloud storage benefits and its efficiency improvements, but all are raising a question regarding the effectiveness and privacy. The effectiveness of the cloud storage system purely depends on the storage capacity and responsiveness of the server, in which the size of the data is large automatically the responsiveness of the storage server goes down. To avoid this issue many researchers found a lots of solution such as multiple cloud server placements, the local cloud farm fixation and so on. But all are coming too struck with the privacy issues and the security threats are more in the case of such things. These issues need to be resolved with one powerful mechanism as well as providing a good storage mechanism without any security threats. In this paper, a healthcare application is taken into consideration and introduce a new fog based cloud storage system is designed such as Intelligent Fog based Cloud Strategy using Edge Devices (IFCSED), in which this Fog Computing process provides an efficient health data storage structure to the cloud server to maintain the high priority records without considering on regular or non-prioritized records. This proposed strategy follows Edge-based Fog assistance to identify the healthcare data priority utilizing analyzing the records, identify the priority level and classify those priority records from the data and pass that to the remote cloud server as well as keep the remaining non-prioritized records into the local fog server. The fog server data can be back up with every point of interval using data backup logics. These backup assures the data protection and the integrity on the storage medium as well as the proposed approach of IFCSED eliminates the processing delay by using time complexity estimations. The data which is coming from Internet of Things (IoT) based real-world health record will be acquired by using controllers and other related devices, which will be delivered to the Edge Devices for manipulation. In this Edge processing device accumulates the incoming health data and classifies that based on the prioritization logic. The health sensor data which is coming in regular interval with normal sensor values are considered to be the regular non-prioritized data and the health sensor data coming up with some abnormal contents such as mismatched heart rate, increased pressure level and so on are considered as a the prioritized record. The sensor assisted health data will low-priority will be moved to the fog server, which is locally maintained into the environment itself and the sensor assisted health data coming up with high priority will be moved into the remote cloud server. The proposed approach assures the time efficiency, reduction in data loss, data integrity and the storage efficiency, as well as these things, will be proved over the resulting sections with proper graphical results.  


2009 ◽  
Author(s):  
Bradley M. Davis ◽  
Woodrow W. Winchester ◽  
Jason D. Zedlitz
Keyword(s):  

2018 ◽  
Vol 18 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Jong-Min Kim ◽  
Jaiwook Baik

2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
pp. 91-95
Author(s):  
Philipp Backes ◽  
Jan Fröhlich

Non-regular sampling is a well-known method to avoid aliasing in digital images. However, the vast majority of single sensor cameras use regular organized color filter arrays (CFAs), that require an optical-lowpass filter (OLPF) and sophisticated demosaicing algorithms to suppress sampling errors. In this paper a variety of non-regular sampling patterns are evaluated, and a new universal demosaicing algorithm based on the frequency selective reconstruction is presented. By simulating such sensors it is shown that images acquired with non-regular CFAs and no OLPF can lead to a similar image quality compared to their filtered and regular sampled counterparts. The MATLAB source code and results are available at: http://github. com/PhilippBackes/dFSR


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


Sign in / Sign up

Export Citation Format

Share Document