Investigation of Flow Structures Along the Embankment Generated Nearby Finite Riparian Vegetation

2021 ◽  
pp. 43-53
Author(s):  
Romitha Wickramasinghe ◽  
Norio Tanaka
Author(s):  
N. P. Benfer ◽  
B. A. King ◽  
C. J. Lemckert ◽  
S. Zigic

1990 ◽  
Author(s):  
JOHN KLINGE ◽  
SCOTT SCHRECK ◽  
MARVIN LUTTGES

2021 ◽  
Author(s):  
Nicholas Rock ◽  
Scott D. Stouffer ◽  
Tyler H. Hendershott ◽  
Edwin Corporan ◽  
Paul Wrzesinski

2021 ◽  
Author(s):  
François Yaya ◽  
Johannes Römer ◽  
Achim Guckenberger ◽  
Thomas John ◽  
Stephan Gekle ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianlong Chang ◽  
Xinlei Duan ◽  
Yang Du ◽  
Baoquan Guo ◽  
Yutian Pan

AbstractBy combining the synthetic jet and film cooling, the incident cooling flow is specially treated to find a better film cooling method. Numerical simulations of the synthetic coolant ejected are carried out for analyzing the cooling performance in detail, under different blowing ratios, hole patterns, Strouhal numbers, and various orders of incidence for the two rows of holes. By comparing the flow structures and the cooling effect corresponding to the synthetic coolant and the steady coolant fields, it is found that within the scope of the investigations, the best cooling effect can be obtained under the incident conditions of an elliptical hole with the aspect ratio of 0.618, the blow molding ratio of 2.5, and the Strouhal number St = 0.22. Due to the strong controllability of the synthetic coolant, the synthetic coolant can be controlled through adjusting the frequency of blowing and suction, so as to change the interaction between vortex structures for improving film cooling effect in turn. As a result, the synthetic coolant ejection is more advisable in certain conditions to achieve better outcomes.


Sign in / Sign up

Export Citation Format

Share Document