A Review of Various Techniques Used in the Implementation of Lane Departure and Road Detection

Author(s):  
Sagrika Chandra ◽  
Manav Gupta ◽  
Bhoomi Gupta ◽  
Vandana Choudhary
2010 ◽  
Vol 44 (7) ◽  
pp. 811-851
Author(s):  
Nicoleta Minoiu enache ◽  
Saïd Mammar ◽  
Sébastien Glaser ◽  
Benoit Lusetti

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1737
Author(s):  
Ane Dalsnes Storsæter ◽  
Kelly Pitera ◽  
Edward McCormack

Pavement markings are used to convey positioning information to both humans and automated driving systems. As automated driving is increasingly being adopted to support safety, it is important to understand how successfully sensor systems can interpret these markings. In this effort, an in-vehicle lane departure warning system was compared to data collected simultaneously from an externally mounted mobile retroreflectometer. The test, performed over 200 km of driving on three different routes in variable lighting conditions and road classes found that, depending on conditions, the retroreflectometer could predict whether the car’s lane departure systems would detect markings in 92% to 98% of cases. The test demonstrated that automated driving systems can be used to monitor the state of pavement markings and can provide input on how to design and maintain road infrastructure to support automated driving features. Since data about the condition of lane marking from multiple lane departure warning systems (crowd-sourced data) can provide input into the pavement marking management systems operated by many road owners, these findings also indicate that these automated driving sensors have an important role in enhancing the maintenance of pavement markings.


2020 ◽  
Vol 11 (1) ◽  
pp. 102-111
Author(s):  
Em Poh Ping ◽  
J. Hossen ◽  
Wong Eng Kiong

AbstractLane departure collisions have contributed to the traffic accidents that cause millions of injuries and tens of thousands of casualties per year worldwide. Due to vision-based lane departure warning limitation from environmental conditions that affecting system performance, a model-based vehicle dynamics framework is proposed for estimating the lane departure event by using vehicle dynamics responses. The model-based vehicle dynamics framework mainly consists of a mathematical representation of 9-degree of freedom system, which permitted to pitch, roll, and yaw as well as to move in lateral and longitudinal directions with each tire allowed to rotate on its axle axis. The proposed model-based vehicle dynamics framework is created with a ride model, Calspan tire model, handling model, slip angle, and longitudinal slip subsystems. The vehicle speed and steering wheel angle datasets are used as the input in vehicle dynamics simulation for predicting lane departure event. Among the simulated vehicle dynamic responses, the yaw acceleration response is observed to provide earlier insight in predicting the future lane departure event compared to other vehicle dynamics responses. The proposed model-based vehicle dynamics framework had shown the effectiveness in estimating lane departure using steering wheel angle and vehicle speed inputs.


Author(s):  
Kai Ren

In all kinds of traffic accidents, the unconscious departure of the vehicle from the lane is one of the most important reasons leading to the occurrence of these accidents. In view of the specific problem of lane departure, a lane departure decision-making method is established without calibration relying on the Kalman filtering fuzzy logic algorithm, according to the characteristics of expressway lanes, based on the machine vision and hearing fusion analysis of lane departure, integrating the extraction of the linear lane line model and the region of interest (ROI) in this paper to judge the degree of vehicle departure from the lane by integrating the slope values of the 2 lane lines in the road image. The results show that the system has good lane recognition capabilities and accurate departure decision-making capabilities, and meet the lane departure warning requirements in the expressway environment.


Sign in / Sign up

Export Citation Format

Share Document