scholarly journals Lane Departure Warning Estimation Using Yaw Acceleration

2020 ◽  
Vol 11 (1) ◽  
pp. 102-111
Author(s):  
Em Poh Ping ◽  
J. Hossen ◽  
Wong Eng Kiong

AbstractLane departure collisions have contributed to the traffic accidents that cause millions of injuries and tens of thousands of casualties per year worldwide. Due to vision-based lane departure warning limitation from environmental conditions that affecting system performance, a model-based vehicle dynamics framework is proposed for estimating the lane departure event by using vehicle dynamics responses. The model-based vehicle dynamics framework mainly consists of a mathematical representation of 9-degree of freedom system, which permitted to pitch, roll, and yaw as well as to move in lateral and longitudinal directions with each tire allowed to rotate on its axle axis. The proposed model-based vehicle dynamics framework is created with a ride model, Calspan tire model, handling model, slip angle, and longitudinal slip subsystems. The vehicle speed and steering wheel angle datasets are used as the input in vehicle dynamics simulation for predicting lane departure event. Among the simulated vehicle dynamic responses, the yaw acceleration response is observed to provide earlier insight in predicting the future lane departure event compared to other vehicle dynamics responses. The proposed model-based vehicle dynamics framework had shown the effectiveness in estimating lane departure using steering wheel angle and vehicle speed inputs.

2010 ◽  
Vol 38 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

Abstract Easy-to-use tire models for vehicle dynamics have been persistently studied for such applications as control design and model-based on-line estimation. This paper proposes a modified combined-slip tire model based on Dugoff tire. The proposed model takes emphasis on less time consumption for calculation and uses a minimum set of parameters to express tire forces. Modification of Dugoff tire model is made on two aspects: one is taking different tire/road friction coefficients for different magnitudes of slip and the other is employing the concept of friction ellipse. The proposed model is evaluated by comparison with the LuGre tire model. Although there are some discrepancies between the two models, the proposed combined-slip model is generally acceptable due to its simplicity and easiness to use. Extracting parameters from the coefficients of a Magic Formula tire model based on measured tire data, the proposed model is further evaluated by conducting a double lane change maneuver, and simulation results show that the trajectory using the proposed tire model is closer to that using the Magic Formula tire model than Dugoff tire model.


Author(s):  
Adam M. Pike ◽  
Bryan T. Wilson

To help reduce single vehicle run-off-road and two-lane two-way crossover crashes, Texas Department of Transportation (TxDOT), United States, has implemented various audible lane departure warning systems on seal coat road surfaces. This 20-month research project explored the effectiveness of these treatments using interior noise and vibration performance metrics and provided recommendations on implementation of these types of treatments. The researchers conducted performance evaluations at 24 unique field sites that had 51 treatments, and at a test deck that had 12 different variations of audible markings. The field sites consisted of varying designs and spacing of audible markings, varying spacing of rumble bars, and milled rumble strips. Researchers found that treatment effectiveness varies with vehicle type and vehicle speed. Traveling at higher speeds and in a vehicle with a stiffer suspension results in higher noise and vibration levels. The specific treatment design also impacts the performance. Treatments with closer spacing, longer bumps, and higher profiles produced higher noise and vibration levels. Certain alternative treatments were able to produce noise and vibration levels that approached levels of typical milled rumble strips. In areas where milled rumble strips cannot be used, these alternative treatments are viable options.


2018 ◽  
Vol 147 (2) ◽  
pp. 9-21
Author(s):  
Maximiliano Hernández García Rojas ◽  
Humberto Velasco Arellano ◽  
David Ubach González ◽  
Martín Montes Rivera ◽  
Marving Omar Aguilar Justo

Author(s):  
Younes Abbassi ◽  
Youcef Ait-Amirat ◽  
Rachid Outbib

This paper mainly studies the comparison of the global vehicle models and the effects of the inertial parameters due to the center of gravity (CG) positions when we consider that the vehicle has only one CG. This paper proposes a new nonlinear model vehicle model which considers both unsprung mass and sprung mass CG. The CG positions and inertial parameters effects are analyzed in terms of the published vehicle dynamics models. To this end, two 14 degree-of-freedom (DOF) vehicle models are developed and compared to investigate the vehicle dynamics responses due to the different CG height and inertial parameters concepts. The proposed models describe simultaneously the vehicle motion in longitudinal, lateral and vertical directions as well as roll, pitch and yaw of the vehicle about corresponding axis. The passive and active moments and the forces acting on the vehicle are also described and they are considered as a direct consequence of acceleration, braking and steering maneuvers. The proposed model [Formula: see text] takes both the CG of sprung mass, unsprung mass and total vehicle mass into account. The second model [Formula: see text] assumes that the vehicle is one solid body which has a single CG as reported in majority of literature. The two vehicle models are compared and analyzed to evaluate vehicle ride and handling dynamic responses under braking/acceleration and cornering maneuvers. Simulation results show that the proposed model [Formula: see text] could offer analytically some abilities and driving performances, as well as improved roll and pitch in a very flexible manner compared to the second model [Formula: see text].


2021 ◽  
Author(s):  
Yongjun Pan ◽  
Xiaobo Nie ◽  
Wei Dai ◽  
Feng Xu ◽  
Zhixiong Li

Abstract The vehicle multibody model can be used for accurate coupling dynamics, but it has higher computational complexity. Numerical stability during integration is also very challenging, especially in complicated driving situations. This issue can be substantially alleviated by using a data-driven nonlinear dynamics model owing to its computational speed and robust generalization. In this work, we propose a deep neural network (DNN)-based modeling approach for predicting lateral-longitudinal vehicle dynamics. Dynamic simulations of vehicle systems are performed based on a semirecursive multibody formulation for data acquisition. The data are then used for training and testing the DNN model. The DNN inputs are the torque applied on wheels and the initial vehicle speed that imitates a double lane change maneuver with acceleration and deceleration. The DNN outputs are the longitudinal driving distance, lateral driving distance, final longitudinal velocities, final lateral velocities, and yaw angle. The dynamic responses obtained from the DNN model are compared with the multibody results. Furthermore, the accuracy of the DNN model is investigated in terms of error functions. The DNN model is finally verified via the results of a commercial software package. The results show that the DNN vehicle dynamics model predicts accurate dynamic responses in real time. The DNN model can be used for real-time simulation and preview control in autonomous vehicles.


2012 ◽  
Vol 2 (4) ◽  
Author(s):  
Mustafa Elkady ◽  
Ahmed Elmarakbi

AbstractThe behaviour of a vehicle at high-speed crashes is enhanced by using active vehicle dynamics control systems. A 6-Degree-of-Freedom (6-DOF) mathematical model is developed to carry out this study. In this model, vehicle dynamics is studied together with vehicle crash structural dynamics. Validation of the vehicle crash structure of the proposed model is achieved to ensure that the modelling of the crumble zone and the dynamic responses are reliable. Five different speeds are selected to investigate the robustness of control system and its effect on the vehicle crash characteristics at low and high speeds with full and offset collision scenarios. A great improvement of vehicle pitch and yaw angels and accelerations at high speed collision are obtained from this analysis.


ICTIS 2013 ◽  
2013 ◽  
Author(s):  
Da-xing Chen ◽  
Nan Li ◽  
Qiang Zhang ◽  
Zeng-qiang Li ◽  
Yu-sheng Li

2012 ◽  
Vol 165 ◽  
pp. 109-113 ◽  
Author(s):  
Z.A. Kadir ◽  
K. Hudha ◽  
F. Ahmad ◽  
Mohamad Faizal Abdullah ◽  
A.R. Norwazan ◽  
...  

This paper presents a 14DOF full vehicle model which consists of ride, handling and tire subsystems to study vehicle dynamics behavior. The full vehicle model is then verified with well-known vehicle dynamics software namely CarSimEd based on the driver input from the steering wheel. Three types of vehicle dynamics test are performed for the purpose of model verification namely step steer test, double lane change test and slalom test. The results of model verification show that the behaviors of the model closely follow the behaviors obtained from CarSimEd software with acceptable error.


Sign in / Sign up

Export Citation Format

Share Document