Agro-Industrial Wastes Incorporated Cement Stabilized Mud Composites for Roof and Wall Assembly in Energy Efficient Building Envelope

Author(s):  
Rajesh Kumar ◽  
Rajni Lakhani ◽  
Bibhakar Kumar Singh ◽  
Mahesh Sharma ◽  
S. K. Negi
2020 ◽  
Vol 307 ◽  
pp. 01022
Author(s):  
Gitanjali Thakur ◽  
Mohamad Asalam ◽  
Mohammed El Ganaoui

One of the major environmental threat in the world today is the increased production of plastic and its usage. The inept plastic waste management system with regard to its recycling and energy recovery in the developing countries creates a global threat as a major land and water body pollutant. However, its durability, thermal properties, and chemical resistance make plastics an alternate choice as a building material. This study investigates the use of plastic in concrete mixture with an objective to improve the thermal performance of the building. The shredded plastic fibers from plastic bottles (polyethylene terephthalate, PET) were used as a partial weight replacement (2.5%, 5%, and 7.5%) of coarse aggregate in concrete blocks. The cubes were cast using the Indian standards (IS 456) and the essential tests were performed. Additionally, experiments were designed to investigate the change in the thermal conductivity of the concrete block due to the varying amount of plastic. It was found that the use of PETs affected the compressive strength and also decreased the thermal conductivity of the concrete blocks. The experimental results suggest that PETs can be used in the construction of energy-efficient building to handle the environmental concerns because of its abundance.


2014 ◽  
Vol 18 (3) ◽  
pp. 925-934 ◽  
Author(s):  
Meghana Charde ◽  
Sourabh Bhati ◽  
Ayushman Kheterpal ◽  
Rajiv Gupta

Energy efficient building technologies can reduce energy consumption in buildings. In present paper effect of designed static sunshade, brick cavity wall with brick projections and their combined effect on indoor air temperature has been analyzed by constructing three test rooms each of habitable dimensions (3.0 m ? 4.0 m ? 3.0 m) and studying hourly temperatures on typical days for one month in summer and winter each. The three rooms have also been simulated using a software and the results have been compared with the experimental results. Designed static sunshade increased indoor air temperature in winter while proposed brick cavity wall with brick projections lowered it in summer. Combined effect of building elements lowered indoor air temperature in summer and increased it in winter as compared to outdoor air temperature. It is thus useful for energy conservation in buildings in composite climate.


2010 ◽  
Vol 29-32 ◽  
pp. 2789-2793
Author(s):  
Cheng Wen Yan ◽  
Jian Yao ◽  
Jin Xu

In the present study a GUI tool for the prediction of building energy performance based on a three-layered BP neural network and MATLAB was developed. The inputs for this tool are the 18 building envelope parameters. The outputs are building heating, cooling and total energy consumptions and the energy saving rate. Compared with the complicated mathematical equations, this tool provides a very easy and effective method for students to learn the effects of building envelope performance parameters on the building energy performance. Thus, this tool can be used in building physics and building energy efficiency courses for the design of energy efficient building.


2020 ◽  
Vol 212 ◽  
pp. 02003
Author(s):  
Roman Borisevich ◽  
Aleksey Dragan

The article discusses wall enclosing structures based on light steel thin-walled structures using mineral wool as a heater. The aim of this work is to determine the most energy-efficient building envelope. For this, two types of steel profile were chosen: thermal profile and thin-walled steel profile. Based on heat engineering calculations, the values of their resistance to heat transfer were obtained. The analysis of the calculations revealed the most energy-efficient design.


Vestnik MGSU ◽  
2016 ◽  
pp. 173-185
Author(s):  
Anatoliy Georgievich Perekhozhentsev

Setting standards of thermal resistance of building envelopes is a current task related with energy saving and energy efficiency of building envelopes. The problem of choosing the factor determining the standard thermal resistance also stays current even after updating of the Construction Norms. The author consider the concept of norming the thermal resistance of building envelope, in which the temperature of the inner surface of a building envelope providing comfortable temperature conditions in premises. The main task of an architect, who is designing an energy efficient building envelope is providing comfortable conditions in premises both in cold and warm periods of the year. The temperature of the inner surface of building envelopes should be included into the construction norms as the main criterion providing comfortable air temperature in premises.


Sign in / Sign up

Export Citation Format

Share Document