Grassland Degradation Restoration and Constructing Green Ecological Protective Screen

Author(s):  
Wei Zhou ◽  
Jianlong Li ◽  
Tianxiang Yue
EDIS ◽  
2020 ◽  
Author(s):  
Arnold W. Schumann ◽  
Ariel Singerman ◽  
Alan L. Wright ◽  
Rhuanito S. Ferrarezi

2015 ◽  
Vol 63 (1) ◽  
pp. 38-52 ◽  
Author(s):  
Jianqiang Qian ◽  
Carlos Alberto Busso ◽  
Zhengwen Wang ◽  
Zhimin Liu

1992 ◽  
Vol 73 (1) ◽  
pp. 317-323 ◽  
Author(s):  
P. Birrer ◽  
N. G. McElvaney ◽  
A. Gillissen ◽  
R. F. Hoyt ◽  
D. C. Bloedow ◽  
...  

Secretory leukoprotease inhibitor (SLPI), a 12-kDa serine antiprotease, normally protects the upper airway epithelial surface from attack by neutrophil elastase (NE). In the context that a variety of inflammatory lung diseases are characterized by large neutrophil burdens with resultant high levels of NE in the lung, recombinant SLPI (rSLPI), a molecule identical to natural SLPI, may be an effective means to augment the anti-NE protective screen of the lung. To determine whether intravenous rSLPI will augment respiratory tract and epithelial surface levels of SLPI and anti-NE capacity, rSLPI was administered intravenously to sheep and SLPI levels were quantified in plasma, lung lymph (as a measure of lung interstitial levels), lung epithelial lining fluid (ELF), and urine. rSLPI (1 g) was administered over 10 min, and after 30 min plasma levels of SLPI were 8 microM and decreased with a half-life of 1.8 h. Lymph SLPI levels paralleled the plasma levels: 4 h after infusion the lymph-to-plasma ratio was 0.8. ELF SLPI levels paralleled the lymph levels: 4 h after infusion the ELF-to-lymph ratio was 0.3. Western analysis demonstrated intact SLPI in lymph and ELF, and functional analysis showed increases in lymph and ELF anti-NE capacity that paralleled the levels of SLPI. As might be expected from a protein with a molecular mass of 12 kDa, urine excretion was high, with 20% of the SLPI excreted over 5 h. However, if the rate of infusion was slowed, SLPI excretion decreased significantly, with a 3-h infusion associated with 9% excretion and a 12-h infusion associated with less than 0.2% excretion.(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 53 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Tsuyoshi Akiyama ◽  
Kensuke Kawamura

2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Bingyu Wang ◽  
Takashi Oguchi ◽  
Lin Zhang

<p><strong>Abstract.</strong> Inland river basins in arid to semi-arid regions are widely distributed in Northwest China, Central Asia, Central Australia, and North Africa, and are often subject to significant human activities. The most distinctive natural feature of such basins is the shortage of water resources, and the pivotal reasons involve less precipitation and heavy evapotranspiration (ET). In recent years, intensive human activities also damage the natural environment of the basins. They result in many problems especially the deterioration of ecological environment which will lead to severe consequences such as desertification, sandstorm, the disappearance of wetlands, reduction of forest and grassland degradation. They prevent us from achieving the goal of sustainable development. How to balance economic development and ecosystem conservation and to realize the sense of sustainability in inland river basins will be vitally important.</p><p>The Heihe River is the second largest inland river in the Northwest of China with a long history development by human (Figure 1). Water resources from the river are crucial not only for the ecosystem but also for local human societies. The Heihe River Basin (HRB) is divided into three zones with different landscapes and natural environments. The upstream of HRB is the headstream which generates water resources mainly from glaciers and snow in Qilian Mountain. A large population of nomadic national minorities inhabits here and keeps animal husbandry as the primary production activity. In the early times, the Chinese government encouraged production activities to stimulate economic growth, and significant over-grazing and resultant severe grassland degradation occurred. Grassland is crucial for maintaining water resources especially in arid regions, without grasses most water will quickly evaporate into the air. Therefore, land resource management about grassland and the impact of human activities on the natural environment are of high research value in the HRB.</p><p>This research aims to investigate the impact of over-grazing on grassland degradation in the inland ecosystem of the HRB. The changes of grassland distribution were simulated under different over-grazing scenarios to provide a reference for resource management and the related decision-making process and to contribute to the sustainable development of the region.</p>


Sign in / Sign up

Export Citation Format

Share Document