Bio-based Polymeric Conductive Materials for Advanced Applications

Author(s):  
Gourhari Chakraborty ◽  
Vimal Katiyar
Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6759
Author(s):  
Jiajin Qi ◽  
Gongmeiyue Su ◽  
Zhao Li

The gel is an ideal platform for fabricating materials for bio-related applications due to its good biocompatibility, adjustable mechanical strength, and flexible and diversified functionalization. In recent decades, gel-based luminescent conductive materials that possess additional luminescence and conductivity simultaneously advanced applications in biosensors and bioelectronics. Herein, a comprehensive overview of gel-based luminescent conductive materials is summarized in this review. Gel-based luminescent conductive materials are firstly outlined, highlighting their fabrication methods, network structures, and functions. Then, their applications in biosensors and bioelectronics fields are illustrated. Finally, challenges and future perspectives of this emerging field are discussed with the hope of inspire additional ideas.


2021 ◽  
Author(s):  
Ruoyang Liu ◽  
Ke Tian Tan ◽  
Yifan Gong ◽  
Yongzhi Chen ◽  
Zhuoer Li ◽  
...  

Covalent organic frameworks offer a molecular platform for integrating organic units into periodically ordered yet extended 2D and 3D polymers to create topologically well-defined polygonal lattices and built-in discrete micropores and/or mesopores.


2020 ◽  
Vol 8 (44) ◽  
pp. 23059-23095 ◽  
Author(s):  
Xinting Han ◽  
Guangchun Xiao ◽  
Yuchen Wang ◽  
Xiaona Chen ◽  
Gaigai Duan ◽  
...  

Conductive polymer hydrogels, which combine the advantages of both polymers and conductive materials, have huge potential in flexible supercapacitors.


2020 ◽  
Vol 91 (3) ◽  
pp. 31301
Author(s):  
Nabil Chakhchaoui ◽  
Rida Farhan ◽  
Meriem Boutaldat ◽  
Marwane Rouway ◽  
Adil Eddiai ◽  
...  

Novel textiles have received a lot of attention from researchers in the last decade due to some of their unique features. The introduction of intelligent materials into textile structures offers an opportunity to develop multifunctional textiles, such as sensing, reacting, conducting electricity and performing energy conversion operations. In this research work nanocomposite-based highly piezoelectric and electroactive β-phase new textile has been developed using the pad-dry-cure method. The deposition of poly (vinylidene fluoride) (PVDF) − carbon nanofillers (CNF) − tetraethyl orthosilicate (TEOS), Si(OCH2CH3)4 was acquired on a treated textile substrate using coating technique followed by evaporation to transform the passive (non-functional) textile into a dynamic textile with an enhanced piezoelectric β-phase. The aim of the study is the investigation of the impact the coating of textile via piezoelectric nanocomposites based PVDF-CNF (by optimizing piezoelectric crystalline phase). The chemical composition of CT/PVDF-CNC-TEOS textile was detected by qualitative elemental analysis (SEM/EDX). The added of 0.5% of CNF during the process provides material textiles with a piezoelectric β-phase of up to 50% has been measured by FTIR experiments. These results indicated that CNF has high efficiency in transforming the phase α introduced in the unloaded PVDF, to the β-phase in the case of nanocomposites. Consequently, this fabricated new textile exhibits glorious piezoelectric β-phase even with relatively low coating content of PVDF-CNF-TEOS. The study demonstrates that the pad-dry-cure method can potentially be used for the development of piezoelectric nanocomposite-coated wearable new textiles for sensors and energy harvesting applications. We believe that our study may inspire the research area for future advanced applications.


Author(s):  
E. L. Baker ◽  
D. Pfau ◽  
J. M. Pincay ◽  
T. Vuong ◽  
K. W. Ng

2019 ◽  
Author(s):  
Hatem M. Titi ◽  
Mihails Arhangelskis ◽  
Athanassis Katsenis ◽  
Cristina Mottillo ◽  
Ghada Ayoub ◽  
...  

Systematic investigation of combustion energies for popular metal-organic frameworks (MOFs) reveals energy content comparable to conventional energetic materials and can be further modified and dine-tuned by polymorphism and isostructural ligand replacement to yield materials with energy densities comparable to Diesel or kerosene.<br>


Author(s):  
Vicente Lucas-Sabola ◽  
Gonzalo Seco-Granados ◽  
Jose A. Lopez-Salcedo ◽  
Jose A. Garcia-Molina ◽  
Massimo Crisci

1988 ◽  
Vol 61 (9) ◽  
pp. 595-601
Author(s):  
HIROYUKI ANZAI
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document